The challenge of developing effective over-the-counter antimicrobial treatments remains a focal point within the scientific community. With fungal species increasingly becoming resistant, concern within the clinical settings and individual well-being continue to be emphasized. This strain is commonly found in oral, vaginal, and gastrointestinal tracts, with an ability to thrive in various pH levels. This prompts concern regarding its susceptibility to natural remedies like medicinal honey. Through a series of trial standardizations, we sought to comprehend and acknowledge the biological and pharmacological characteristics exhibited by this strain. This study utilized RPMI (1:1,000,000 ul) to determine the optimal growth phase of C. albicans, measuring absorption at 600 nm wavelength in 3-hour intervals. A 1:2 serial dilution was conducted to capture the growth dynamics. Data was collected and analyzed to determine the minimum inhibitory concentration (MIC) of C. albicans to achieve the desired level of growth in RPMI 1640 at 37°C. The minimum inhibitory concentration (MIC) was determined through the minimal inhibitory concentration (MIC) assay. RPMI 1640 is known to be a nutrient-rich medium that serves as a substrate for microbial growth, allowing for the assessment of growth inhibition. This medium is chosen due to its minimal nutritional requirements, making it an ideal choice for determining the growth and proliferation of C. albicans. The growth phase was assessed using a spectrophotometer set to measure the optical density of 600 nm (OD 600). Using spectrophotometry, we were able to estimate the concentration of cells per volume within the liquid sample encompassing both host and dead cells. Another trial of serial dilutions was made at 1 x 10^7/mL. Once again, RPMI was the chosen medium to inoculate 1 colony. The dilution factors were as follows: 1 mL RPMI with C. albicans (1:1,000,000). The concentrations for these dilutions were as follows: 900 µL, RPMI (1:1,000,000); 900 µL, RPMI + C. albicans (1:1,000,000); 900 µL, RPMI + C. albicans (1:1,000,000); 900 µL, RPMI + C. albicans (1:1,000,000); and 900 µL, RPMI + C. albicans (1:1,000,000). The transmission rate of C. albicans within a specific period and condition was used to determine the MIC concentration. The minimum inhibitory concentration (MIC) for C. albicans was determined as 1 x 10^7/mL, which was the lowest concentration to inhibit fungal growth. RPMI 1640 was used to culture 5 mL of a stock solution containing 1 x 10^7/mL of C. albicans. Four distinct dilutions were prepared in separate tubes for each honey sample. The concentrations were diluted as follows: 30% (0.4 g honey + 2 mL RPMI + C. albicans); 20% (0.4 g honey + 2 mL RPMI + C. albicans); and 15% (0.4 g honey + 2 mL RPMI + C. albicans). The honey samples were incubated at 37°C for 24 hours to assess the inhibitory effect. The concentration of C. albicans was diluted to 1 x 10^7/mL, which was the lowest concentration to inhibit fungal growth. RPMI 1640 was used to culture 5 mL of a stock solution containing 1 x 10^7/mL of C. albicans. Four distinct dilutions were prepared in separate tubes for each honey sample. The concentrations were diluted as follows: 30% (0.4 g honey + 2 mL RPMI + C. albicans); 20% (0.4 g honey + 2 mL RPMI + C. albicans); and 15% (0.4 g honey + 2 mL RPMI + C. albicans). The honey samples were incubated at 37°C for 24 hours to assess the inhibitory effect.