
Permutations in Concatenated Zigzag Codes

California State Polytechnic University, Pomona

and

Loyola Marymount University

Department of Mathematics Technical Report

Shawn Abernethy Jr.� , Cindy Lee, † Jasmin Uribe‡ , Sai Michael Wentum Jr.,§

Laura Smith¶, Edward Mosteigk

Applied Mathematical Sciences Summer Institute
Department of Mathematics & Statistics

California State Polytechnic University Pomona
3801 W. Temple Ave.
Pomona, CA 91768

August 4, 2007

�Elizabethtown College
†Loyola Marymount University
‡University of Arizona
§College of Charleston
¶University of California, Los Angeles
kLoyola Marymount University, Los Angeles

1

Contents

1 Introduction 5

2 Objective 5

3 Zigzag Codes and Concatenated Zigzag Codes 6
3.1 Zigzag Codes . 6
3.2 Concatenated Zigzag Codes . 7

4 Permutations, Dispersion and Variance 9
4.1 Permutations and Dispersion . 9

4.1.1 Permutations Generated from Matlab’s randperm Command 10
4.1.2 Permutation Generated from Matlab’s magic command 10

4.2 Theoretical Results Concerning Permutations 11
4.3 Behavior of Average Dispersion . 11
4.4 Variance of a Permutation . 13
4.5 Group Dispersion Table . 16

5 Triangular Di�erence Tables 19

6 Comparisons of Permutations in Concatenated Zigzag Codes 22
6.1 Background . 22
6.2 Iterations of the Decode Process . 23
6.3 Reshaping the Information Matrix D . 24
6.4 Classical Block Permutations . 24
6.5 Algebraic Permutations . 26

6.5.1 Fields and Monomial Orders . 26
6.5.2 The Construction of Algebraic Permutations 28

6.6 Structured Permutations by Tejas Bhatt and Victor Stolpman 29

7 Future Work 33

8 Acknowledgements 34

9 Programs 35
9.1 Zigzagsimualator . 35

9.1.1 RandMessage.m . 37
9.1.2 Parities.m . 37

9.2 Permute.m . 38
9.2.1 codeword.m . 39
9.2.2 tilde.m . 39
9.2.3 whitenoise.m . 40
9.2.4 Decode.m . 40
9.2.5 calcLe.m . 41
9.2.6 calcF.m . 42

2

9.2.7 calcB.m . 42
9.2.8 calcW.m . 43
9.2.9 calcLo.m . 43
9.2.10 clip.m . 44
9.2.11 FinalLLR.m . 44

9.3 Permutations . 45
9.3.1 Right to Left/Top to Bottom . 45
9.3.2 Right to Left/Bottom to Top . 45
9.3.3 Left to Right/Top to Bottom . 46
9.3.4 Left to Right/Bottom to Top . 46
9.3.5 Permutation Presented by Tejas Bhatt and Victor Stolpman 47
9.3.6 conditionA.m . 49
9.3.7 conditionB.m . 49
9.3.8 un3d.m . 50
9.3.9 Randomly Permuting Each Column 50
9.3.10 Randomly Permute Each Column with a Restriction 51
9.3.11 swapperperm.m . 53
9.3.12 Magic Square Permutation . 53
9.3.13 throwupperm.m . 54
9.3.14 fatten.m . 55
9.3.15 swapprows.m . 55
9.3.16 horazontalswrill.m . 56

9.4 Dispersion and their Measurements . 56
9.4.1 sumvarows.m . 56
9.4.2 dispofistofpermswithinvers.m . 57
9.4.3 inverseperm.m . 58
9.4.4 compute2perms.m . 58

9.5 Triangular Distance and Random Walks . 59

3

Abstract

Coding theory is a branch of mathematics, computer science and electrical engi-
neering that explores the transmission of information across noisy channels. Coding
theory is used in data transmission, data storage, and telecommunications. The focus
of this project is on concatenated zigzag codes, which are constructed using permuta-
tions. We study the e� ects of permutations on the error-correcting capabilities of the
coding scheme. In conjunction, we explore the behavior of average dispersion in order
to further our understanding of randomness of a permutation and fnd correspondence
with error-correction.

4

1 Introduction

Coding theory is the study of the transmission of data across a noisy channel with the
ultimate goal of successfully recovering the data to its original form from an error-ridden
message. Since a message may be corrupted upon transmission across the noisy channel,
error-correcting measures must be taken in order to ensure that the receiver can reconstruct
the original codeword. This study works to improve the error-correcting capabilities of
certain codes while maintaining reasonable transmission time.

It is important to note that coding theory is neither cryptography nor steganography.
Although the term coding theory is often confused with both of these forms of communica-
tion, coding theory is an entirely di�erent feld of study. Steganography is literally translated
as covered writing and is not largely used in practice. It simply refers to sending messages
hidden from the naked eye. One example is tattooing a message on someone’s head and then
letting their hair grow, thus covering up the message. The receiver, however, knows where
the message is located and simply removes the hair and reads the message. Steganography is
not secure because an interceptor only needs to fnd the location of the message. Cryptogra-
phy, on the other hand, is much more secure. It literally means hidden writing, which means
that even if the message is intercepted only the sender and receiver have the predetermined
algorithm that encrypts and decrypts the message. In coding theory, however, one does not
attempt to hide the message; rather, one adds redundancy to a message to overcome errors
that are introduced during transmission.

The performance of an encoding scheme is measured by its error-correcting capabilities
and its rate, which is defned as the ratio of the number of information bits to the number
of total bits sent.

information bits
rate = . (1)

total bits

Higher rates correspond to faster transmission since more information bits are transmitted
per total bits. However, transmissions with high rates are more prone to uncorrectable errors
because there is less redundancy present in the transmission. Thus, it is desirable to fnd an
ideal rate that minimizes transmission time but maximizes error correction.

Coding theory is used in many places. An example of this is NASA, which uses coding
theory for sending and receiving transmissions across space. It can also be found in everyday
life ranging from data storage in CDs and DVDs to wireless communications. Currently,
engineers from Nokia are applying for patents regarding specifc components of a class of
codes called concatenated zigzag codes. The focus of our research is on optimizing the
error-correcting capabilities of concatenated zigzag codes.

2 Objective

This project explores the relationship between permutations and their role in the error-
correcting capabilities of concatenated zigzag codes. Through examining permutations and
analyzing their e�ects on error-correction, we hope to fnd a specifc type of permutation that
reduces error rates. One of the properties we focus on is the behavior of the dispersion of
permutations. Dispersion is a measure of the randomness of a permutation. In conjunction,

5

we explore the behavior of average dispersion in order to further our understanding of the
randomness in a permutation and fnd a correspondence with error-correction, if any. Finally,
we create a new way of analyzing permutations using variance and group dispersion tables.

3 Zigzag Codes and Concatenated Zigzag Codes

The coding process is made up of three basic parts: encoding, transmission through noisy
channels, and decoding.

A message is encoded using a predetermined coding scheme, which can be as simple or
as complex as the sender desires. A codeword is defned as any output of an encoding
scheme. The codeword is what is transmitted. During transmission, noise may introduce
errors to the codeword, resulting in corruption of the message. This error-ridden message is
then received by the intended recipient and decoded using specifc decoding algorithms.

3.1 Zigzag Codes

Zigzag codes can be described using the following graph, where the white nodes are informa-
tion bits and the black nodes are parity bits. We use I to denote the number of segments in
the graph and J to denote the number of information bits on each segment. In other words,
I denotes the total number of parity bits and J denotes the number of information bits per
parity bit. In this particular example, I = 3 and J = 2.

The information bits are denoted using the notation
d(i, j), where i is the number of the segment on which the
node lies and j refers to the specifc position within that
segment. The parity bits are denoted by p(i), where the
corresponding node lies at the end of segment i.

In the case of zigzag codes the encoding process con-
sists of computing the redundant parity bits. These par-
ity bits are calculated by adding all previous nodes on the
same segment using the following equations:

JX
p(1) = d(i, j) mod 2;

j=1

JX
p(i) = d(i, j) + p(i − 1) mod 2, for i = 2, 3..., I.

j=1

For example, consider the message [011001]. With
the aid of the diagram, we compute the parity bits.

6

To calculate the frst parity bit, the bits of the frst
segment are added together modulo two:

p(1) = d(1, 1) + d(1, 2) = 0 + 1 = 1.

The second parity bit is the sum of the frst parity bit
and the information bits lying on the segment:

p(2) = p(1)+d(2, 1)+d(2, 2) = 1+1+0 = 2 mod 2 = 0.

The subsequent parity bits are calculated in a similar
manner.

Redundancy introduced by the parity bits ensures
that more errors will be corrected during the decoding
process, thus increasing the error-correcting capabili-
ties of the code.

To facilitate the encoding and decoding process,
the information bits and parity bits are stored in the matrix D and the vector P, respectively.

D =

0@ 0 1
1 0

1A P =

0@ 1
0

1A
0 1 1

Referring to the zigzag code diagram, we create matrices for calculations. The I × J
matrix, D, is derived by taking each of the information bits from a given segment of the
diagram and placing them in the corresponding row of D. The column vector P is obtained
by reading the parity bits from the zigzag diagram top to bottom.

3.2 Concatenated Zigzag Codes

Zigzag codes by themselves have poor error-correcting capabilities. However, they have
Jexcellent transmission rates, namely

J+1 . Concatenated zigzag codes are used to increase
error-correction. Although These codes have excellent error-correcting capabilities, they have
a lower rate.

Concatenated zigzag codewords are created by frst creating K copies of the message D.
Each replica is fed through one of the permutations, ˇ1, ˇ2, ...ˇK (for background info on
permutations, see Section 4.1). For each ˇk(D), the parity vector Pk is computed by using
a constituent zigzag code. Finally, the codeword is formed by concatenating the matrix D
with the parity vectors P1, P2, ..., PK .

7

The fgure above is a graphical representation of the encoding process using a concate-
nated zigzag encoder. The message, D, is replicated, permuted, and encoded. Then the
parity vectors, P1, P2, ..., PK , are concatenated with D and sent through the noisy channel
as the codeword.

To decode, we implemented the Max-Log-APP (MLA) process of decoding zigzag codes
originally presented by Li Ping in [Pi(2)] and later presented by Tejas Bhatt and Victor
Stolpman in [Bh]. Using MLA, the decoding process computes forward and backward ex-
trinsic information for the parity bits of the kth permutation for each of the sub-iterations.
This constructs a single iteration of the decoding process.

To form the codeword, the I × J message matrix D and the parity vectors P1, P2, ..., PK

are concatenated. The 0s of the codeword are then changed to 1s and the 1s are then changed
to -1s. It is this modulated codeword that is transmitted to the receiver.

The receiver then reconstructs the message matrix, and the parity vectors received with
possible corruption. The received message matrix is denoted De and the parity vectors as
Pe 1, Pe 2, ..., Pe K . Let Pe k be the received parity vector corresponding to the kth permutation.
The receiver then uses the parity vectors to correct any errors introduced to the received
message with the following equations:

• Max-log approximation: � �
�nW (z1, z2, ..., zn) = sign(zj) · min1�j�n|zj|j=1

• Forward recursion: � �
F [q](pk(i)) = pek(i) + W F [q](pk(i − 1)), L[

o
q](dk(i, 1)), ..., L[

o
q](dk(i, J))

where i = 1, 2, . . . , I and F [q](pk(0)) = +1

• Backward recursion: � �
L[q]B[q](pk(i − 1)) = pek(i − 1) + W o (dk(i, 1)), ..., L[

o
q](dk(i, J)), B[q](pk(i))

where i = I − 1, ..., 2, 1 and B[q](pek(I)) = pe(I)

• Extrinsic Information !
[q] [q]

F [q](pk(i − 1)), Lo (dk(i, 1)), ..., Lo (dk(i, j − 1)),
L[q](dk(i, j)) = We [q] [q]

Lo (dk(i, j − 1)), ..., Lo (dk(i, J)), B[q](pk(i)) " #X X
L[q] [L[q−1](dk(i, j)) = ˇk de(i, j) + [ˇ−1[L[q](dk0 (i, j))]] + [ˇ−1 (dk0 (i, j))]] ,o k0 e k0 e

k0<k k0>k

where Lo is initialized as an I × J matrix of zeros.

• Final Log Likelihood Ratio Computation

KX � �
L[q]L[q](d(i, j)) = de(i, j) + ˇk

−1
e (dk(i, j))

k=1

The receiver then takes the sign of all the entries in the I × J matrix L[q]. The larger the
magnitudes of the entries in L[q], the more probable that entry is a 1 or -1. The receiver then
demodulates the matrix to construct the message – hopefully the original message sent.

8

4 Permutations, Dispersion and Variance

As we previously stated, the focus of our project is to determine which sets of permutations
optimize error-correction in concatenated zigzag codes. One of the focuses of this section is
on dispersion, a measure of the randomness of a permutation. Since we are working with
a set of permutations, using the dispersion of a single permutation will not suÿce as a
predictor of performance of concatenated zigzag codes. This requires the creation of what
we call group dispersion tables. In addition, we study the variance of a permutation, which
is a possible way of measuring how a certain row is permuted with respect to other rows of
the message matrix.

4.1 Permutations and Dispersion

Defnition 1. A permutation of set size n is defned to be any bijection ˇ : [n] ! [n]
where [n] denotes {1, 2, 3, ..., n}.

Consider the following permutation of [5]:� �
ˇ =

1
4

2
3

3
1

4
5

5
2

.

This notation represents ˇ(1) = 4, ˇ(2) = 3, ˇ(3) = 1, ˇ(4) = 5 and ˇ(5) = 2.
To measure the randomness of a permutation we use a metric known as dispersion. To

properly defne the dispersion of a permutation, we need to make a preliminary construction.

Defnition 2. Given a permutation ˇ : [n] ! [n], the list of di �erences of ˇ is given by

DL(ˇ) = {(j − i, ˇ(j) − ˇ(i)) | 1 � i < j � n}. (2)

Let |DL(ˇ)| denote the number of unique elements of DL.

Defnition 3. The dispersion of ˇ is a normalized measure of the number of unique ordered
pairs that appears in the list of di�erences, computed as:

|DL(ˇ)|
disp(ˇ) = �

n
� . (3)

2

Note that 0 < disp(ˇ) � 1 for any permutation, where a dispersion of 0 indicates a
highly structured permutation and 1 is a random permutation. To illustrate this defnition,
we compute the dispersion of the following permutation: � �

1 2 3 4
ˇ = .

3 4 1 2

The elements of DL(ˇ) are given in the following table:
Finally, we fnd the dispersion by counting the number of distinct ordered pairs in DL(ˇ)� �

and dividing by n
2 . In this particular case, there are two repeated ordered pairs, (1,1) and

(2,-2), and so there are only four unique ordered pairs. Therefore,

|DL(ˇ)| 4 4 2
disp(ˇ) = �

n
� = �

4
� = = .

62 2 3

9

i

j

Figure 1: Table 4.1

1 2 3 4
1 * * * *
2 (1,1) * * *
3 (2,-2) (1,-3) * *
4 (3,-1) (2,-2) (1,1) *

4.1.1 Permutations Generated from Matlab’s randperm Command

An example of a permutation with a high dispersion, is a random permutation. One way to
generate a random permutation is to use the built-in command randperm of Matlab. The
graph below shows a random permutation with set size 1000 and dispersion 0.8133. The
average dispersion yielded by a random permutation of Matlab is approximately 0.81.

4.1.2 Permutation Generated from Matlab’s magic command

A permutation can also be created by using the magic square command, magicsquare,
provided in Matlab. It produces a n × n matrix such that each integer from 1 to n2 appears
exactly once as an entry and all the row sums and column sums are identical. To create
a permutation from a magic square, we reshape the matrix into a row vector of length n2 .
This is done by taking consecutive rows and placing them one after another to form a row
vector. The following is a graphical representation of a permutation constructed from a
50 × 50 magic square. This permutation has a dispersion of 0.016. The graph demonstrates
the structure of the magic square and its correspondence to a low dispersion.

10

4.2 Theoretical Results Concerning Permutations

While working with permutations, we found the following results.

Theorem 4. Defne ˇ1 : [n] ! [n] to be the identity permutation and defne ˇ2 : [n] ! [n]
by ˇ2(i) = n − i. Then for any permutation ˇ : [n] to Z,

disp(ˇ1) = disp(ˇ2) � disp(ˇ).

Proof. Due to the construction of a triangular di�erence table, the minimum number of
distinct pairs in DL(ˇ) is n − 1 for any permutation ˇ. We see that

ˇ1(j − i) − ˇ1(j) = −i,

ˇ2(j − i) − ˇ2(j) = i,

and so the entries of each diagonal are identical; thus ˇ1 and ˇ2 have the smallest possible
dispersion.

Corollary 5. For any block length n, the minimum dispersion of a permutation is always
2 .
n

Proof. By Theorem 4 the identity permutation has the smallest dispersion, and it is enough
to show it has dispersion

n
2 . The triangular di�erence table of the identity has n − 1 unique

entries, and so the dispersion of the identity is

n − 1 2
= .

n(n−1) n
2

4.3 Behavior of Average Dispersion

To further understand dispersion and any possible correlation it has with error-correction,
we examine the histograms of permutations with respect to dispersion. Average dispersion is
computed by summing the values of dispersion over all permutations of a given set size and

11

then dividing by the total number of permutations of that set size. The following equation
is used to calculate the average dispersion of all permutations of set size n: X1

average disp(n) = disp(ˇ).
n!

ˇ2Sn

For set size 2 the average dispersion of a given permutation is 1; since there are 2 possible
permutations both with dispersion 1, thus the average dispersion is 1+1 = 1. For set sizes

2
up to 10, it is possible to compute the dispersion of all permutations. However, for larger
set sizes, only a sample of the total number of permutations is used to calculate the average
due to constraints on computing power and time.

The following histograms show the distribution of permutations with respect to disper-
sion.

From these distributions, it can be seen that as the set size increases, the proportion of
permutations with dispersion between 0.8 and 0.9 increases. Since producing a histogram for
the dispersion of all permutations of set size n > 10 is computationally infeasible, sampling
is necessary due to the memory constraints of our computers.

The graph below demonstrates the asymptotic behavior of the average dispersion with
respect to set size. In fact, the average dispersion approaches a constant around 0.81.

12

The behavior demonstrated by the distribution of average dispersion can be approximated
by a sum of two exponential functions: disp(n) = 4.5964−1.7533n + 0.06661.7533n + 0.8173. It
is unknown whether average dispersion has an asymptote at a value around 0.81, or whether
it approaches 0. The following table shows the set size, the average dispersion, the standard
deviation and the sample size of each set size examined (if n >10). The table suggests the
standard deviation is approaching 0 and the dispersion is approaching a value around 0.81.

n Average Dispersion Standard Deviation Sample Size
2 1 0 2
3 0.8888888 0.1721326 6
4 0.8472222 0.1766343 24
5 0.8466666 0.1494715 120
6 0.8383333 0.1273568 720
7 0.8355253 0.0656522 5040
8 0.8318895 0.0866602 40320
9 0.8300064 0.0737352 362880
10 0.8280427 0.0656522 3628800
11 0.8268012 0.0581352 30000000
12 0.8254789 0.0534279 30000000
13 0.8246220 0.0488241 30000000
14 0.8237070 0.0451643 30000000
15 0.8230517 0.0419172 30000000
16 0.8223984 0.0391362 30000000
17 0.8218721 0.0366868 30000000
18 0.8213694 0.0345478 30000000
19 0.8209739 0.0326291 30000000
20 0.8205578 0.0309247 30000000
30 0.8182114 0.0203068 30000000
40 0.8170504 0.0151259 10000000
50 0.8163426 0.0120574 10000000
60 0.8158753 0.0100037 10000000
70 0.8155449 0.0085911 10000000
80 0.8152998 0.0075097 10000000
90 0.8151062 0.0066752 10000000
100 0.8149514 0.0060031 10000000
200 0.8142764 0.0030067 10000000
300 0.8140503 0.0020198 10000000
400 0.8139387 0.0015189 10000000
500 0.8138702 0.0012231 10000000
600 0.8138251 0.0010271 10000000
700 0.8137924 0.0008843 10000000

4.4 Variance of a Permutation

In general, there are a lot of ways to construct permutations. For various classes of permu-
tations, their performance in concatenated zigzag codes is well-known. For example, as we
shall see in this section, any of the classical block permutations have very poor performance.
In contrast, randomly-generated permutations have excellent performance. Since there are
so many di�erent permutations it would be useful if there were a way to quantify how well
a permutation would perform before running time-intensive simulations.

Defnition 6. Defne the symmetric group, Sn, to be the collection of all the permutations
of [n] = {1, 2, . . . , n}.

13

�

�

�

�

Defnition 7. Given integers I, J and a set S, denote the set of all I × J matrices whose
entries take on values from the set S by

MatI,J (S).

Defnition 8. Given positive integers I, J , defne

ˆI,J : SIJ ! MatI,J ({1, . . . , IJ})

to be the function that takes a permutation ˇ 2 SIJ and produces the I × J matrix whose
(i, j) entry is ˇ((i − 1)J + j). That is, ˆI,J places the values ˇ(1), ˇ(2), . . . , ˇ(IJ) in an I × J
matrix row-by-row.

Defnition 9. Given positive integers I, J , defne

I,J : SIJ ! MatI,J ({1, . . . , IJ})

to be the function that takes in a permutation ˇ and produces the I × J matrix, the row
correlation matrix RCMI,J (ˇ) whose (i, j)th entry is ˘ ˇ

ˆI,J (ˇ)
.

I

Defnition 10. Let ˇ 2 Sn be a permutation, and let I, J be positive integers such that
n = IJ . Then the (I, J)-variance of a permutation is the sum of the population variance
of the rows of RCMI,J (ˇ); that is,

I J JXX X
varI,J (ˇ) =

1
(mij −

1
mi,j)

2 ,
J j

i=1 j=1 j=1

where M = (mi,j) = I,J (ˇ).

Example 11. Consider the permutation � �
ˇ =

1
10

2
2

3
9

4
4

5
7

6
6

7
3

8
8

9
1

10
5

.

Evaluating the mapping 2,5 at the permutation ˇ, we get � �
2,5(ˇ) =

2
2

1
1

2
2

1
1

2
1

.

The mean of the frst row is
2 + 1 + 2 + 1 + 2

= 1.6,
5

and the mean of the second row is

2 + 1 + 2 + 1 + 1
= 1.4.

5

14

�

�
�

�

The population variance of the frst and second rows of 2,5(ˇ) are

(2 − 1.6)2 + (1 − 1.6)2 + (2 − 1.6)2 + (1 − 1.6)2 + (2 − 1.6)2

= .24
5

and
(2 − 1.4)2 + (1 − 1.4)2 + (2 − 1.4)2 + (1 − 1.4)2 + (1 − 1.4)2

= .24,
5

respectively. Thus, the (2, 5)-variance of ˇ is 0.48.

A problem with the variance of a permutation is that unlike dispersion, variance does
not have a natural normalized value between 0 and 1. Since variance tends to increase with
set size, it is hard to compare permutations of signifcantly di�erent set sizes. Thus, for a
given set size, we wish to create an upper-bound for the variance. We would then be able
to divide the variance by the upper bound, thus producing a normalized value that ranges
between 0 and 1. We make a conjecture concerning this upper bound in the case I = J.

Proposition 12. Let ˇ : [n2] ! [n2] be a permutation such that every row of n,n(ˇ) consists
of the entries 1 through n in some order. Then the (n,n)-variance of n,n(ˇ) is

n3 − n
.

12

Proof. Let x be a row that appears in n,n(ˇ). Then x is a vector with n entries and it has
one occurrence of each of the numbers 1, 2, . . . , n. By Defnition 10, the variance of one row
is X1

n

x)2(xi − ¯
n

i=1 P
where x̄ =

n
1 xi. Thus, the total variance for the n rows is

n nX X1
n · (xi − x̄)2 = (i − x̄)2

n
i=1 i=1

(4)

It is well known that
nX n(n + 1)

i = ,
2

i=1

and so

15

n n � �2X X (n + 1)
(i − x̄)2 = i −

2
i=1 i=1 � �Xn

(n + 1)2

= i2 − i(n + 1) +
4

i=1 X X Xn n n
(n + 1)2

= i2 − i(n + 1) +
4

i=1 i=1 i=1 X X Xn n
(n + 1)2 n

= i2 − (n + 1) i + 1
4

i=1 i=1 i=1

n(n + 1)(2n + 1) n(n + 1)(n + 1) n(n + 1)2

= − +
6 2 4� �

2(2n + 1) − 6(n + 1) + 3 (n + 1)
= n(n + 1)

12� �
(4n + 2) − (6n + 6) + (3n + 3)

= n(n + 1)
12

n(n + 1)(n − 1)
=

12
n3 − n

= .
12

2Conjecture 13. For any ˇ 2 Sn the maximum (n, n)-variance possible for ˇ is n3

12
−n .

4.5 Group Dispersion Table

Since concatenated zigzag codes utilize a set of permutations, the dispersion of a single
permutation is not the defning measure of the performance of the set. A possible predictive
measure of the performance of a set of permutations, however, may be found in the group
dispersion table.

Defnition 14. Given a set of K permutations, the group dispersion table is a lower-
triangular matrix M such that (

D(ˇiˇj
−1) for i < j;

M(i, j) =
0 otherwise.

Defnition 15. Given permutations ˇ1, . . . , ˇk 2 Sn, the average dispersion distance of
{ˇ1, . . . , ˇk} is the average of the nonzero entries of the group dispersion table.

The following graphs demonstrate that two permutations ˇ1, ˇ2 with high dispersion can
yield a permutation ˇ1ˇ2

−1 with low dispersion.

16

Example of a randomly generated permutation, ˇ1 with dispersion of 0.8155.

Example of an algebraic permutation, ˇ2 with dispersion 0.8178.

Example of the composition of the two permutations, ˇ1ˇ2
−1 with a dispersion of 0.3410.

Thus the average dispersion distance is defned so that we have a measure of how di�erent
the permutations in a collection are from one another.

Example 16. Consider the set of 7 permutations in S10 defned as

17

� �
ˇ1 =

1
1�

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

10
,

10�
ˇ2 =

1
1�

2
3

3
5

4
7

5
9

6
2

7
4

8
6

9
8

10
,

10 �
ˇ3 =

1
2�

2
4

3
6

4
8

5
10

6
1

7
3

8
5

9
7

10
,

9 �
ˇ4 =

1
10�

2
9

3
8

4
7

5
6

6
5

7
4

8
3

9
2

10
,

1 �
ˇ5 =

1
1�

2
4

3
6

4
7

5
9

6
10

7
2

8
3

9
5

10
,

8 �
ˇ6 =

1
6�

2
7

3
8

4
9

5
10

6
1

7
2

8
3

9
4

10
,

5�
ˇ7 =

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

10
10

.

As an intermediate step toward constructing the group dispersion table, we place the
following permutations in a table before computing the values of dispersion:

i

j

1
2
3
4
5
6
7

1
0

ˇ1ˇ
−1
2

ˇ1ˇ
−1
3

ˇ1ˇ
−1
4

ˇ1ˇ
−1
5

ˇ1ˇ
−1
6

ˇ1ˇ
−1
7

2
0
0

ˇ2ˇ
−1
3

ˇ2ˇ
−1
4

ˇ2ˇ
−1
5

ˇ2ˇ
−1
6

ˇ2ˇ
−1
7

3
0
0
0

ˇ3ˇ
−1
4

ˇ3ˇ
−1
5

ˇ3ˇ
−1
6

ˇ3ˇ
−1
7

4
0
0
0
0

ˇ4ˇ
−1
5

ˇ4ˇ
−1
6

ˇ4ˇ
−1
7

5
0
0
0
0
0

ˇ5ˇ
−1
6

ˇ5ˇ
−1
7

6
0
0
0
0
0
0

ˇ6ˇ
−1
7

7
0
0
0
0
0
0
0

Taking the dispersion of every nonzero entry, we obtain the following table:

i

j

1
2
3
4
5
6
7

1
0

0.2889
0.2889
0.2000
0.5778
0.2889
0.3778

2
0
0

0.4000
0.2889
0.5778
0.4000
0.4667

3
0
0
0

0.2889
0.5111
0.4000
0.4667

4
0
0
0
0

0.5778
0.2889
0.3778

5
0
0
0
0
0

0.6000
0.4889

6
0
0
0
0
0
0

0.3111

7
0
0
0
0
0
0
0

Summing the entries in the group dispersion table, we obtain a value of 8.4667, and
8.4667 so the average of the nonzero entries is

21 = 0.4032. Thus, for this particular set of
permutations, the average dispersion distance is 0.4032.

18

�5 Triangular Di erence Tables

To simplify calculations and to examine patterns among the ordered pairs of table 4.1, the
table can be condensed to include only the second component of each ordered pair. To
fnd the number of unique elements of DL(ˇ), consider any repetitions in each diagonal.
This condensed DL(ˇ) table is known as the triangular di�erence table (TDT). To compute
dispersion using the TDT, sum the counts of the number of unique entries in each diagonal
and then divide by the total number of integer entries in the table. This is described more
formally in Defnition 17 below and in Lemma 41.

Defnition 17. Let ˇ : [n] ! [n] be a permutation. We defne the triangular di�erence table
of ˇ to be the lower-triangular (i.e., below the main diagonal) portion of the n × n matrix
whose (i, j) entry (where i < j) is given by

ˇ(j + 1) − ˇ(i). (5)

Thus, the (i, j) entry of the TDT is ˇ(j + 1) − ˇ(i). Note that the triangular di�erence
table has n − 1 rows and n − 1 columns with di�erent numbers of numerical entries.

Because the triangular distance table can be found using the list of di�erences, where the
frst components in each diagonal are the same, the values are only compared within its own
diagonal. In other words, when looking for distinct values, or the number of distinct values
in a TDT, only the comparisons within diagonals are taken into consideration.

Example 18. Given the permutation � �
1 2 3 4
4 3 1 2

,

the corresponding triangular TDT is

−1
−3 −2 .
−2 −1 1

In this case, although -1 appears in both the 1st and 3rd rows, because they are in di�erent
diagonals, they are considered unique. (Same for the -2s).

Lemma 19. Given a permutation ˇ of [n] and an integer 1 � a � n − 1, the number of
entries in the triangular di�erence table of ˇ whose absolute value is a must be n − a.

Proof. Let ˇ be a permutation in Sn and let a 2 [n − 1]. There are n − a pairs i, j such that
|j − 1| = a, namely, (1, a + 1), (2, a + 2), ..., (n − a, n). Thus, there are n − a pairs of the form
(ˇ(i), ˇ(j)) such that |ˇ(j) − ˇ(i)| = a.

Lemma 20. Let ˇ : [n] ! [n] be a permutation and let A = (ai,j) be the corresponding
triangular di�erence table. Then ai,j is the sum of the ith through jth entries of the diagonal;
that is,

jX
ai,j = a`,`. (6)

`=i

19

Proof. By Defnition 17, we know that

ai,j = ˇ(j + 1) − ˇ(i).

Thus,
ai,j = [ˇ(j + 1) − ˇ(j)] + [ˇ(j) − ˇ(j − 1)] + ... + [ˇ(i + 1) − ˇ(i)]

= ajj + a(j − 1)(j − 1) + ... + aii.

Using this result, the relationship between the main diagonal and the rest of the numerical
entries in the table can be seen.

Lemma 21. Given a permutation ˇ1 : [n] ! [n], defne ˇ2 : [n] ! [n] by

ˇ2(i) = n − ˇ1(i).

Then the triangular di�erence tables of ˇ1 and ˇ2 are the negative transposes of one another.

Proof. Let A = (aij) and B = (bij) be the TDTs of ˇ1andˇ2, respectively. Then

bij = ˇ2(j + 1) − ˇ2(i) (7)

= (n − ˇ1(j + 1)) − (n − ˇ1(i)) (8)

= −(ˇ1(j + 1) − ˇ1(i)) (9)

= −aij. (10)

By the defnition of a triangular di�erence table, it is known that for each TDT there
exists a permutation that generates it. An interesting question is whether or not a TDT can
be generated by more than one permutation.

Theorem 22. Each triangular di�erence table is generated by a unique permutation.

Proof. Let �(ˇ) be the main diagonal of a TDT, M. By Lemma 19, for some k, l, the (k, l)
entry of the TDT, M , is n − 1. So for any permutation ˇ with the given TDT, M ,

ˇ(l + 1) − ˇ(k) = n − 1,

and so,
ˇ(l + 1) = n.

In other words, ˇ(l+1) is determined by M . Since (ˇ(2)−ˇ(1), ˇ(3)−ˇ(2), ..., ˇ(n)−ˇ(n−1))
is determined by M , one can use this information in conjunction with the fact ˇ(l + 1) = n
to solve for ˇ(1), ˇ(2), ..., ˇ(n).

Defnition 23. Given a permutation ˇ of set size n with TDT A = (aij), the main diagonal
of ˇ is the diagonal from a1,1 to an−1,n−1 of A. In particular, it is defned as

�ˇ = [ˇ(2) − ˇ(1), ˇ(3) − ˇ(2), ..., ˇ(n) − ˇ(n − 1)]. (11)

20

Defnition 24. Given a vector v = (v1, ..., vn) 2 Rn , defne the absolute value of v by

|v| = (|v1|, ..., |vn|) 2 Rn .

If d is the diagonal of a TDT, then (−d) is the diagonal of another TDT. The relation-
ship of permutations that generate such TDTs is given in Lemma 21. Studying the absolute
values of the entries in the diagonals and the signs of the entries in the diagonals, we pose
the following two conjectures.

Conjecture 25. Let ˇ 2 Sn, where n is odd. Let (d1, ..., dn) = �ˇ. If |di| = |dn−i| for all
1 � i � n − 1, then di = dn−i for all 1 � i � n − 1.

Conjecture 26. The number of the permutations whose TDTs have palindromic diagonals
is divisible by 4.

Now, we count the number of potential candidates for the diagonal of a TDT. We call a
vector v 2 [n − 1] a candidate if for any 1 � i � n − 1, at most n − i of the components of
v have absolute value i (i.e, the vector v satisfes the condition of Lemma 19).

Note that not all candidates are actually diagonals of TDTs.
To fnd these candidates, we use exponential generating functions, which are defned as

follows.

Defnition 27. The exponential generating function of the sequence (ao, a1, a2, ...) is
defned by

1X nanx
g(x) = . (12)

n!
n=0

Defnition 28. The number of candidates of set size n is denoted

dn = {v 2 Rn−1| v is a candidate}.

We calculate dn using exponential generating functions. The exponential generating
function can calculate the number of the absolute values of the entries of �ˇ. Since there
are up to n − j possible occurrences of j in the TDT, we use the following as a factor of our
exponential generating function given by (12):

n−jX ix
gj(x) = .

i!
i=0

By the theory of exponential generating functions (see [Tu]), dn is the coeÿcient of xn−1 in

n−1Y
gj(x).

j=1

21

Example 29. Let n = 4. In any candidate vector, there may be up to 3, 2, and 1 occur-
rences of 1,2, and 3, respectively. In the exponential generating function, the number 1 is

2 3 2
represented by (1 + x + x

2! + x), 2 is represented by (1 + x + x), and 3 is represented by
3! 2!

(1 + x).
Thus, we have the following exponential generating function:

12 3 2 X qx x x aqx
g(x) = (1 + x + +)(1 + x +)(1 + x) = .

2! 3! 2! q!
q=0

The coeÿcient of x
3!

3
is a3 = 19, which means that there are 19 candidates of vector length

3 for n = 4.

6 Comparisons of Permutations in Concatenated Zigzag

Codes

In this section we outline the results obtained by running simulations that compare the
performance of various permutations when implemented in concatenated zigzag codes.

6.1 Background

Permutations are a main component in the construction of concatenated zigzag codes. One
of the primary goals of this project is to determine what kinds of permutations and which sets
of permutations improve error-correcting capabilities. In order to do this, Zigzagsimulator,
a Matlab program, was created. The simulator takes in the dimensions of the message, the
permutation(s), the signal to noise ratios (SNR) to be tested and the number of iterations
the decoding process is to perform. The program returns a graph of the signal to noise ratio
versus the bit-error-rate (BER) which is defned as the number of uncorrectable bits to the
total bits transmitted.

Zigzagsimulator includes a random message generator, an encoder that is fed permuta-
tions, a noise generator, a decoder and a way of checking the uncorrectable errors remaining
after the decoding process.

To create a message, a simple algorithm was written to generate a random message of
specifed dimensions by the user. The encoding process was simulated by a program that
replicated the message matrix a specifed number of times, K, then permuted Kreplicas
with permutations given by the user. Each is run through the zigzag encoding process and
the parity matrices are computed. Finally, these K parity matrices are concatenated with
the original message and transmitted as a codeword through the noise generating algorithm.
This specifc noise generation algorithm simulates additive white Gaussian noise.

Finally, the codeword is received and decoded. The decoding algorithm uses the decoding
equations presented by Tejas Bhatt and Victor Stolpman in [Bh] from work previously done
by Li Ping in [Pi(2)]. These algorithms use the redundancy provided by parity bits to fnd
errors in the received word. Belief propagation is used to determine the most probable
message. Belief propagation is an algorithm that calculates the probability that a certain bit
is either a 0 or a 1. The number of iterations tells the decoding algorithm how many times

22

�

to cycle through the decoding process, calculate probabilities and allow each permutation to
check itself against the others. This process ensures that only the most probable message is
returned after decoding.

The last step of the simulation compares the decoded message to the original message,
counting the number of di�erences, or uncorrectable errors. The lower the BER, the better
error-correcting capabilities of the code, which means there are less uncorrectable bits per
total bits, and the original message is more accurately reconstructed.

6.2 Iterations of the Decode Process

Since the decoding algorithm for concatenated zigzag codes involves an iterative process, we
must choose how many iterations to use in our own simulations. In [Pi(2)], performance
was measured for the case where eighteen iterations were used. To determine how many
iterations to use in our simulations, we considered runtime. Although using fewer iterations
yields faster runtimes, we wanted to make sure that accuracy was not sacrifced for faster
runtimes.

We ran simulations for various numbers of iterations between 1 and 30, testing values of
SNR between 0 and 3 dB. We used parameters I = 128 and J = 4 and implemented K = 4
randomly-generated permutations. Thus all codes considered for this comparison have rate
1
2 with block length 1024. The resulting graph is as follows:

The graph shows us that as the number of iterations increases, the BER decreases.
Although the performance gain due to increasing the number of iterations from one to ten
is signifcant, the payo is comparatively negligible when transitioning from ten to twenty
iterations. Based on these fndings, further simulations are run with thirteen iterations,
producing comparable results to a larger number of iterations but minimizing computing
time.

23

6.3 Reshaping the Information Matrix D

The following graphs illustrate the e� ects of reshaping the information matrix D (by varying
the paramters I, J, and K) while holding fxed the block length and the coding rate. For
example, for block length 200, let I = 50 and J = K = 2. The number of parity bits in this
case is IK = 50 · 2 = 100. Keeping the same block length, let I = 25, then J = K = 4. The
number of parity bits would still be 100, or 25 · 4. The frst graph used a block length of
1200, and the second graph used one of 2400.

The graphs show that the optimal values of J and K for rate 1
2

are 4, 5, and 6 for block
lengths 1200 and 2400. Suggesting that when holding the number of parity bits fxed for
rate 1

2
the size of the set of permutations used should be 4, 5, or 6.

Conjecture 30. Let N be the number of information bits. When applying a concatenated
zigzag coding scheme of rate 1

2
, the optimal BER is obtained when D is an N × J matrix

J

where J 2 {4, 5, 6} and the number of permutations is K = J .

6.4 Classical Block Permutations

To test how well highly structured permutations perform, we used the four classical block
permutations as a set of permutations from section 3.1.2, see [Jo]. The four permutations all
have a dispersion equal to 0.0095, showing how structured these permutations are. In all our
simulations we compared the performance of these permutations with randomly generated
permutations, each of which has a dispersion of approximately 0.81.

Classical block permutations are constructed by reading the entries of a matrix in various
ways. Consider the following 3 × 3 matrix:

A =

24 1 2 3
4 5 6

35 .
7 8 9

We can obtain the classical block permutations of A by reading the matrix A as the permu-
tation is titled:

24

• Left to Right/Top to Bottom (LR/TB) Permutation on A:

� �
1 2 3 4 5 6 7 8 9
1 4 7 2 5 8 3 6 9

• Left to Right/Bottom to Top (LR/BT) Permutation on A:

� �
1 2 3 4 5 6 7 8 9
7 4 1 8 5 2 9 6 3

• Right to Left/Top to Bottom (RL/TB) Permutation on A:

� �
1 2 3 4 5 6 7 8 9
3 6 9 2 5 8 1 4 7

• Right to Left/Bottom to Top (RL/BT) Permutation on A:

� �
1 2 3 4 5 6 7 8 9
9 6 3 8 5 2 7 4 1

All of these permutations have a dispersion of 0.0095.
Our frst comparison involved running simulations with I = 100 and J = K = 4 so that

the block length was 800 with rate 1
2 . We compared the performance of using all four classical

block permutations against four randomly generated permutations. The graph below shows
that the set of four classical block permutations do not perform as well as a set of four
randomly-generated permutations.

25

1
Next we compared various pairs of classical block permutations to randomly generated per-
mutations. The block length used was 200 with I = 50, J = K = 2 and a rate of .

2
The

graph below shows that in each case the performance of the various pairs of di�erent classical
permutations were outperformed by a pair of randomly generated permutations, which sug-
gests that permutations with a great deal of structure do not have the same error-correcting
capabilities as randomly generated permutations.

6.5 Algebraic Permutations

Is it possible to create a set of structured permutations with a wide range of values of
dispersion that perform as well as a set of randomly-generated permutations? To address this
question, we constructed algebraic permutations. A brief background of their construction
follows.

6.5.1 Fields and Monomial Orders

Defnition 31. A feld F is a set with two operations defned on the set,“addition” and
“multiplication,” such that the following properties hold:
(i) Closure: 8a, b 2 F, if a · b 2 F, then a + b 2 F
(ii) Commutativity: 8a, b 2 F, a + b = b + a, and a · b = b · a
(iii) Associativity: 8a, b, c 2 F, a + (b + c) = (a + b) + c
(iv) Distributivity: 8a, b, c 2 F, a · (b + c) = (a · b) + (a · c)
(v) Identity: 9 0, 1 2 F 8a 2 F such that a + 0 = a, a · 1 = a
(vi) Additive Inverse: 8a 2 F, 9(−a) 2 F such that a + (−a) = 0
(v) Multiplicative inverse: 8a 2 F, a =6 0, 9b 2 F such that a · b = 1

Theorem 32. The set of integers Zp is a feld if and only if p is prime.

Defnition 33. A feld is a fnite feld if it contains only a fnite number of elements.

26

� � � � �

� �

� � � � � �

� � � �

� �

� �

� � � �

� �
� �

� � � � �
� � �

Theorem 34. There exists a feld with q elements if and only if q = pr for some p and
positive integer r.

The collection of all polynomials in indeterminate x with coeÿcients in the feld F is
denoted by F[x].

Defnition 35. A polynomial f(x) is said to be reducible over F if there exist nonconstant
polynomials g(x), h(x) 2 F[x] such that f(x) = g(x)h(x). A polynomial is irreducible if it
is not reducible.

Defnition 36. Let h(x) be an irreducible polynomial over Fp[x] and let r = deg h(x). The
set Fp[x]/hh(x)i is defned to be the collection of all polynomials over Fp of degree at most
r − 1; that is,

Fp[x]/hh(x)i = { r−1
r−1 + . . . + 0 | i 2 Fp}, where is an indeterminate.

Defne addition as regular addition between two polynomials modulo p and multiplication
as follows:

(i) Fix an irreducible polynomial h(x) of degree r with coeÿcients in Fp. This is to be
used for the multiplication of any pair of polynomials.

(ii) For two polynomials f and g, compute f · g as normal polynomial multiplication.

(iii) Divide f · g by h. The remainder is defned to be the product of f(x) and g(x) in Fpr .

Theorem 37. Given two irreducible polynomials of the same degree, h1(x), h2(x) 2 Fp[x],
Fp[x]/hh1(x)i and Fp[x]/hh2(x)i are isomorphic.

Consequently, since Fp[x]/hh1(x)i and Fp[x]/hh2(x)i are isomorphic whenever r = deg h1(x) =
deg h2(x), the notation Fpr is used for all isomorphic copies of this feld.

Constructing permutations from Zq to Zq using fnite felds requires the use of a construct
called monomial orders. Let S be a set. A total order on S is a binary relation “<” where
the following hold for all , , 2 Zn .

(i) For all =6 2 Zn , < or < .

(ii) If < and < , then < .

(iii) 6< .

Defnition 38. A monomial ordering on Zn is a total order “ < ” such that
−!

a. For all 2 Nn , � 0 .

b. > =) + > + .

Two types of monomial orders are the Lexicographic and Graded Lexicographic Orders.
Comparisons under the lexicographic order are given by the following rule: < if and only
if the frst nonzero entry of − is positive. Comparisons under the graded lexicographic P P P n n norder are given by the following rule: < if and only if i < i or i =P i=1 i=1 i=1

n
i=1 i and the frst nonzero entry of − is positive.

27

� � � �

6.5.2 The Construction of Algebraic Permutations

To construct the algebraic permutations used in later simulations, a computer program was
used, see [Do]. The program uses a polynomial permutation ˇ : Zpr ! Zpr .

ˇ−1 ˇ−1
ˇ1 ˇ2 ˇ3 2 1Zpr −! (Zp)

r −! Fpr −! Fpr −! (Zp)
r −! Zpr (13)

The function ˇ1 uses a monomial ordering to order the vectors of (Zp)
r . It orders the

vectors of (ZP)
r from smallest to largest according to this monomial order. That is, (ZP)

r =
{v0, . . . , vpr −1} where vi � vi+1. Then ˇ1 is defned by ˇ1(i) = vi. The function ˇ2 : (Zp)

r !P r−1 iFpr is given by (r−1, . . . , 0) 7! i=0 i . The function ˇ3 : Fpr ! Fpr is given by x 7! p(x),
where p(x) 2 Fpr [x].

Algebraic permutations were chosen since dispersion varies much more widely for alge-
braic permutations than for randomly generated permutations. One algebraic permutation
may have a relatively low dispersion, whereas another may have a dispersion around 0.81.
The algebraic permutations used were generated by the following polynomials in F512[t]:

ˇ1(t) = t, dispersion = 0.0039

ˇ2(t) = t2 , dispersion = 0.3357

ˇ3(t) = t3 , dispersion = 0.8160

ˇ4(t) = t4 , dispersion = 0.4993

ˇ5(t) = t + t2 + t3 , dispersion = 0.8152

We consider two sets of permutations, �1 = {ˇ1, ˇ2, ˇ3, ˇ4} and �2 = {ˇ2, ˇ3, ˇ4, ˇ5}.
The set �1 consists of permutations whose dispersion ranges from 0 to 0.8160, and the set
�2 consists of permutations whose dispersion ranges from 0.3357 to 0.8160. We compared
the performance of �1 and �2 with a set of four random permutations, all with dispersion
approximately 0.81. Comparing the performance of zigzag codes with parameters I = 128,
J = K = 4, and these three sets of permutations, the following graph was obtained:

28

The results show that both �1 and �2 did as well as the four random permutations,
which demonstrates that a set of permutations with widely varying dispersion can do as well
a set of randomly-generated permutations with dispersion near 0.81.

6.6 Structured Permutations by Tejas Bhatt and Victor Stolpman

After showing it was possible to use a set of permutations with varying values of dispersion
and still attain high levels of performance, the next trial was dedicated to using a set of
structured permutations described by Tejas Bhatt and Victor Stolpman in [Bh]. These
permutations have low dispersion but Bhatt and Stolpman claim that their performance is
comparable to that of randomly generated permutations.

Bhatt and Stolpman constructed the following method for producing a collection of per-
mutations {ˇ1, ˇ2, ...ˇK }, each of which permutes the entries of an I × J matrix D. For
the sake of completeness, we provide a brief description of the permutations constructed by
Bhatt and Stolpman. For more details, refer to [Bh].

• Reshape the original message I × J matrix D as an I 0 × J 0 matrix, where I 0 � I and
I 0J 0 = IJ .

• A circular shift of a column

2 666664
a1

a2

a3
. . .

3 777775 of s units, generates the column

2 66666664

an−s
. . .
a1

an
. . .

3 77777775
. For

an
an−s−1

each ˇk and each column of D we perform a circular shift.

• The following two conditions must be met:

– No two columns can have the same column shift for any ˇk, where k 2 {1, 2, ...K}.
– For any ˇk, where k 2 {1, 2, ...K}, there does not exist a row u 2 ˇk(D) and a

row v 2 ˇk0 (D) such that u and v have entries in common.

• The next step bit-reverses the rows of the permuted matrix. Consider the tuple
R = (1, 2, . . . , I 0), which indexes the rows. First convert the entries of this tuple into
binary and reverse-order the bits of each entry. Then after converting these entries
back to decimal to produce a vector R0 , reorder the rows of the matrix according to
how R0 is obtained from R by permuting the entries. The following example illustrates
this process. Begin with the 4 × 3 matrix below:

2 664
a1 a2 a3

a4 a5 a6

a7 a8 a9

a10 a11 a12.

3 775

29

�

�

�

R = {1, 2, 3, 4} ! {001, 010, 011, 100} (R converted to binary)

! {100, 010, 110, 001} (R bit-reversed)

! {4, 2, 6, 1} (R converted to decimal)

! {1, 2, 4, 6} (bit-reversed R re-ordered)

The bit reversed This suggests that the new order of the rows should be {4, 2, 1, 3}.3 775
a10 a11 a12

a4 a5 a6

2 664matrix would then be .
a1 a2 a3

a7 a8 a9

• Optionally, the columns of the matrix may be swapped. This step was not performed
in any of our trials.

For comparison, we developed a special class of hybrid permutations.

Defnition 39. A random column permutation of the entries of an I × J matrix (read
row-by-row) is a permutation ˇ = [IJ] ! [IJ] such that the entries of a column remain in the
same column from which they originated after the permutation is applied. Mathematically
this is equivalent to the condition ˇ(l) � l mod J for all l 2 [IJ].

Defnition 40. Given random column permutations ˇ1, ˇ2, ..., ˇK , we call {ˇ1, ˇ2, ..., ˇK } a
set of restricted random column permutations if for any i,j, where i 6= j, any row u
of ˇk(D), and any row v of ˇk0 (D), no more than two entries of u and v are identical.

Since the previous two permutations are permutations that only permute the columns,
Theorem 42 pertains to the upper bound of the dispersion of these permutations. By counting
the number of unique entries along each diagonal of a TDT, we can reformulate the defnition
of dispersion as follows.

Lemma 41. Given a permutation ˇ : [n] ! [n], the dispersion of ˇ is given by X � n−1
1
n
2 k=1

where

k(ˇ) (14)

k(ˇ) = |{ˇ(i) − ˇ(j) | i, j 2 [n], i − j = k}|. (15)

Theorem 42. Let ˇ : [IJ] ! [IJ] be a permutation such that for every ` 2 [IJ], ˇ(`) � `
mod J . Then the dispersion of ˇ is at most

4/J − 3/J2 + 1/IJ2 + 2/I2J2

.
1 − 1/IJ

Therefore, as J !1, dispersion heads to zero, regardless of the magnitude of I. Moreover,
as I !1, dispersion approaches 4/J − 3/J2 . If J � I, then

4I2J − 3I2 + I − J + 3
disp(ˇ) � .

I2J2 − IJ

30

�
� �

�

�

�

�

Proof. Let k 2 [IJ]. Since ˇ(` + k) � ` + k mod J and ˇ(`) � ` mod J , it follows that
ˇ(` + k) − ˇ(`) � k mod J and so ˇ(` + k) − ˇ(`) = k + mJ for some m 2 Z. Moreover,
|ˇ(` + k) − ˇ(`)| < IJ , and so −IJ < ˇ(` + k) − ˇ(`) < IJ . Therefore, −IJ < k + mJ < IJ ,
and so −I − k < m < I − k . If k is an integer, then m can take on 2I − 1 possible values;

J J J

that is, k � 2I − 1. If
J
k is not an integer, then m can take on 2I possible values; that is,

k � 2I. For 1 � k � I(J − 1) + 1, we use the upper bound k � 2I. Thus,

IJ−I+1 IJ−I+1X X
k � 2I = (IJ − I + 1)(2I) = 2I2J − 2I2 + 2I. (16)

k=1 k=1

The number of pairs (i, j) such that i, j 2 [IJ] and i−j = k is IJ −k, and so k � IJ −k.
Therefore,

IJ−1 IJ−1 I−2X X X
k � IJ − k = k = (1/2)(I − 2)(I − 1) = (1/2)(I2 − 3I + 2). (17)

k=IJ−I+2 k=IJ−I+2 k=1

By combining (16) and (17), and then simplifying, we obtain

IJX−1

k �
1
(4I2J − 3I2 + I + 2). (18)

2
k=1 �

IJ
�

Dividing this sum by
2 and simplifying, we obtain

4I2J − 3I2 + I + 2 4/J − 3/J2 + 1/IJ2 + 2/I2J2

disp(ˇ) � = .
I2J2 − IJ 1 − 1/IJ

Note that for one out of every J terms in (16), we can use the upper bound 2I − 1 in
place of 2I. If J � I, then IJ − I + 1 � J(J − 1) + 1, in which case we can subtract J − 1
from the bound given in (16). In this case, we obtain

4I2J − 3I2 + I − J + 3
disp(ˇ) � .

I2J2 − IJ

When testing these types of permutations we used a block length of 1024, I = 128 and
J = K = 4 and rate

2
1 . For our simulations, we tested concatenated zigzag codes with

I = 128 and J = K = 4, which yields a block length of 1024 and a code rate of 1
2 . The

graph below compares four classes of permutations.

31

Bhatt and Stolpman’s permutations with I 0 = 64, J 0 = 8 possess an average dispersion
distance of 0.1853 and when I 0 = 128, J 0 = 4 the average dispersion distance is 0.1486.
When looking at the individual permutations generated for each set, the dispersion values
are quite low (less than 0.1), thus showing that the dispersion of individual permutations
is not the only measure of the performance of a set of permutations. The random column
permutations have an average dispersion distance of 0.5088 and the restricted random column
permutations have an average dispersion distance of 0.5084. The set of random permutations
have an average dispersion distance of 0.8141. The graph shows that a set of permutations
that permute only the values within their respective columns have a BER comparable to a set
of random permutations. Furthermore, the proximity of all fve permutations suggests that
there exist structured permutations that outperform random permutations. The results
also show that both hybrid permutations outperformed Bhatt and Stolpman’s structured
permutations.

This trial also showed that there is no correlation between the performance of a set of
permutations in concatenated zigzag codes and average dispersion distance. The reason is
that the random column permutations and restricted random column permutations did the
best, and their average dispersion distance was around 0.5. A set of random permutations
had a average dispersion distance of 0.8141, and had excellent BER as well. In addition,
the a two sets of the Bhatt and Stolpman permutations had great BER, but had a low
average dispersion distance of 0.1486 and 0.1853. Since all of these sets of permutations had
great error correction, but varying average dispersion distance, we can conclude that there
is no strong correlation between the two present. However, there may be a weak positive
correlation present. In fact, we have no examples where the average dispersion distance is
high and yet the corresponding permutations yield poor performance

32

7 Future Work

In further studies, we would like to determine if variance is an accurate predictor of the
error-correcting capabilities of set permutations. If variance is not an accurate predictor,
we would like to fnd another predictor for sets of permutations. In addition, we hope to
determine if the average dispersion of the permutations of Sn approaches a constant around
0.81 as n increases and if that value can be written in terms of common constants or a sum
of a known sequence. To aid in future simulations, we would like to improve the eÿciency
of the zigzag simulator by either streamlining the Matlab code or implementing a version in
C++. We would also like to include frame error rates, the amount of uncorrectable frames
to the total number of frames transmitted. Finally, we would like to run more simulations
using random column permutations versus random permutations.

33

8 Acknowledgements

This research was conducted at the Applied Mathematical Sciences Summer Institute (AMSSI)
and has been partially supported by grants given by the Department of Defense (through its
ASSURE program), the National Science Foundation (DMS-0453602), and National Secu-
rity Agency (MSPF-07IC-043). Substantial fnancial and moral support was also provided
by Don Straney, Dean of the College of Science at California State Polytechnic University,
Pomona. Additional fnancial and moral support was provided by the Department of Math-
ematics at Loyola Marymount University and the Department of Mathematics & Statistics
at California State Polytechnic University, Pomona. The authors are solely responsible for
the views and opinions expressed in this research; it does not necessarily refect the ideas
and/or opinions of the funding agencies and/or Loyola Marymount University or California
State Polytechnic University, Pomona.

We would also like to thank Dr. Edward Mosteig for spending his summer with us. We
wish him well for all his future endeavors. We would like to thank Laura Smith for all of her
advice and compassion. We would like to thank David Uminsky for being awesome. Finally,
we would like to thank the directors, Dr. Erika Camacho and Dr. Stephen Wirkus, the other
faculty, Dr. Lily Khadjavi and Dr. Angela Gallegos, and everyone else who made AMSSI
possible. Thanks for a great summer.

34

9 Programs

This section documents the Matlab code and the C++ code used throughout this project.

9.1 Zigzagsimualator

This program is the main function that calls upon all the other subfunctions to calculate
BERs for given SNRs and Permutations. The user sends it the dimensions of the message
they would like to produce.

function BER = Zigzagsimulator2(I,J,SNR,PI,NUMITERS) %%
%%%
% Zigzag Code Used to Simulate BER %
% The second draft of the main function that relies on %
% user input for the dimensions of the message, I, J, %
% a vector of values for the SNR, Pi for the Permutations,%
% and the number of iterations the decoder will go though %
% created: July 2, 2007 %
% modified: July 9, 2007 %
% Applied Mathematical Science Institute %
% Team Special Ed %
%%%

diary ’BERexecute.txt’; %%
%1.) Declaration of Variables
NUMERRORS = 500; % Tolerance of Errors
BER = zeros(1,length(SNR)); % initialization of Bit-Error-Rate
FRAME = zeros(1,length(SNR));
[K x] = size(PI); % determines how many subiterations
BLOCKLENGTH = I*(J); % The number of bits for each codeword
fprintf(’ === Variables Declared === \n’); %%
%2.) Main loop: runs the whole simulation for
% each value of snr placed in the SNR array
fprintf(’ === Loop Started === \n’) for s=1:length(SNR)

loops = 0; % initializes loop count at 0
errors = 0; % initializes error count at 0 for each pass through
frameerror = 0; % initializes frame error count to 0
IP = zeros(K,I*J); % loop used to determine the inverse permutation
for k=1:K % for each of the K permutations

IP(k,PI(k,:)) = 1:I*J;
end

while(errors < NUMERRORS)% when the number of errors is greater than our
% allowed limit the loop ends
D = RandMessage(I,J);% randomly generates a message

35

%%% ENCODING BEGINS
P = Parities(D,PI); % calculates the parities for each permutation
C = codeword(D,P); % merges D and P into a 1xI*(J+K) vector
C = tilde(C); % maps 0->1 and 1->(-1)
%%% ENCODING ENDS

%%% SIMULATION OF ERRORS BEING INTRODUCED
% USING GAUSSIAN NOISE
[R, sigma] = whitenoise(C,SNR(s),I*J, I*(J+K)); % R is the received word
%R = C; %<-Check’s encoding scheme-test for the DECODING
%%% END SIMULATION OF NOISEY CHANNEL

%%% DECODING BEGINS
Dtilde = R(1:I*J); % separates the received message bits from
% the received word
Ptilde = R(I*J+1:I*(J+K)); % separates the parity bits for each permutation
% from the received word

% the loops talk to eachother....sup?...nothing much you?...same
% old...how about those 1’s and -1’s?...O, they are ok, but they are
% a bit different from yours...O, really? How about I use some of
% yours...sure...
received = sign(Decode(PI,IP,I,J,K,Dtilde,Ptilde,NUMITERS,sigma));
% only concerned with whether the or not if the sign is positive or
% negative

% sums the errors from the decoded message to the original
errors = errors + sum(abs(C(1:I*J) - received))/2;
if errors~=0

frameerror = frameerror+1;
end
%errors = sum(abs(C - sign(R)))
loops = loops + 1; % increments the loop

end
BER(s) = errors/(loops*BLOCKLENGTH); %calculates the Bit Error Rate
fprintf(’\n’);
fprintf(’%s%1.2f%s%1.10f’,’For SNR = ’,SNR(s),’ the BER is ’, BER(s));
fprintf(’\n’);

end %%
% Graphs the different Bit Error Rates for the different SNR
ZigzagBERgraph(SNR,BER);
diary off;

36

9.1.1 RandMessage.m

%%%
% RandMessage.m %
% Creates a IxJ Random Message %
% created: July 2, 2007 %
% %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
function D = RandMessage(I,J)

D = zeros(I,J); % create a I x J matirx of zeros
for i=1:I

for j=1:J
if rand <= .5 % if rand is less than .5

D(i,j) = 1; % replace the d(i,j) with
end % with a 1

end
end

9.1.2 Parities.m

%%%
% Parities.m %
% Function used to compute the parities for each PI %
% created: July 2, 2007 %
% %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
% Function used to compute the parities for each Pi for D
function P = Parities(D,Pi)

[K IJ] = size(Pi);

for k=1:K
Temp = Permute(D,Pi(k,:));
P(k,:) = CalcParities(Temp);

end

37

9.2 Permute.m

%%%
% Permute.m %
% created: July 2, 2007 %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
function dk = Permute(D,Pi)
%%%%%%%%%%%%%%%%%%%%%
% this is how we permute
% pi = [3 4 5 2 6 1]
%(a1 a2 a3 a4 a5 a6)
% pi(a) = (a6 a4 a1 a2 a3 a5)
[I J] = size(D);

k = J;

for i=1:I
d(k-J+1:k) = D(i,:);
k = k +J;

end temp = d(Pi);

k=1;

for i=1:I
for j=1:J

dk(i,j) = temp(k);
k = k+1;

end
end

38

9.2.1 codeword.m

%%%
% Codeword.m %
% Function used to create the codeword sent through the %
% noisey channel %
% created: July 2, 2007 %
% %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
function c = codeword(D,P)
% D is the message
% P are the parities
% Returns 1*IJ+IK codeword
[I J] = size(D); [K IJ] = size(P);

d = reshape(D’, 1, I*J); p = reshape(P’, 1, K*IJ);

c = [d p];

9.2.2 tilde.m

%%%
% tilde.m %
% Function used to modulate the matrix to 1’s, and -1’s %
% from the original codeword of 0’s and 1’s %
% created: July 2, 2007 %
% %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
function modc = tilde(c)
modc = (-1).^c; %converts 1’s to -1’s and 0’s to 1’s

39

9.2.3 whitenoise.m

%%%
% whitenoise.m %
% Function used to simulate Gaussian white noise %
% and corrupts bits sent from the codeword %
% created: July 2, 2007 %
% %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%

function [r sigma] = whitenoise(c, snr, k, n)
% c: codeword
% snr: signal to noise ratio
% k/n is the rate
% returns sigma and the distorted vector
en = 10 ^(snr/10); sigma = 1/(sqrt(2*en*(k/n))); r = c; for
i=1:length(c)

x = rand();
if x < 10^(-50)

x = 10^(-50);
end
r(i) = c(i)+ sigma*sqrt(-2*log(x))*cos(2*pi*rand());

end

9.2.4 Decode.m

%%%
% Decode.m %
% Function that decodes the received codeword %
% created: July 2, 2007 %
% %
% Applied Mathematical Science Institute %
% Team Special Ed %
%%%
function Final = Decode(Pi,iP,I,J,K,Dtilde,Ptilde,numiters,sigma)

Le = zeros(K,I*J); Lo = zeros(1,I*J);

for iter=1:numiters
for k=1:K

Le(k,:) = calcLe(Ptilde((k*I-I+1):(k*I)),Pi(k,:),iP(k,:),Lo,I,J);
clip(Le);
Lo = calcLo(Dtilde,Le,k,K,Pi(k,:));

40

clip(Lo);
end

end Final = FinalLLR(Dtilde,Le,K);

9.2.5 calcLe.m

%%%
% calcLe.m %
% created: July 2, 2007 %
% a function that computes part of extrinsic Information %
% on data bits %
% Applied Mathematical Science Institute %
% Team Special Ed %
%%%
function Le = calcLe(Ptilde,Pi,iP,Lo,I,J)

Lo = Permute(Lo,Pi); F = calcF(Ptilde,Lo,I,J); B =
calcB(Ptilde,Lo,I,J);

for j=1:J
temp = Lo(1:J);
temp(j) = Inf;
Le(j) = calcW([temp B(1)]);

end

for i=2:I
for j=1:J

temp = Lo(i*J-J+1:i*J);
temp(j) = Inf;
Le((i-1)*J+j) = calcW([temp B(i) F(i-1)]);

end
end Le = Permute(Le, iP);

41

9.2.6 calcF.m

%%%
% calcF.m %
% created: July 2, 2007 %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
function F = calcF(Ptilde,Lo,I,J)
%calcF
%a function that computes that forward recursion
%06/28/07

F(1) = Ptilde(1) + calcW([Inf Lo(1:J)]);
for i=2:I

F(i) = Ptilde(i) + calcW([F(i-1) Lo((i-1)*J+1:i*J)]);
end

9.2.7 calcB.m

%%%
% calcB.m %
% created: July 2, 2007 %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
function B = calcB(Ptilde,Lo,I,J)
%a function that computes that backward recursion

B(I) = Ptilde(I); for i=I:-1:2
B(i-1) = Ptilde(i-1) + calcW([B(i) Lo((i-1)*J+1:i*J)]);

end

42

9.2.8 calcW.m

%%%
% calcW.m %
% created: July 2, 2007 %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
function W = calcW(a)
% function that computes W
n = length(a);

tally = 1; min = inf;

for i=1:n
tally = tally * a(i);
if abs(a(i))<min

min = abs(a(i));
end

end

if tally < 0
sign = -1;

elseif tally > 0
sign = 1;

else
sign = 0;

end

W = sign*min;

9.2.9 calcLo.m

%%%
% calcLo.m %
% Function that decodes the received codeword %
% created: July 2, 2007 %
% a function that computes part of extrinsic Information %
% on data bits %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
function Lo = calcLo(Dtilde,Le,k,K,Pi)

[m n] = size(Le); sum = zeros(1,n);

43

for i=1:K
if i ~= k

sum = Le(i,:)+ sum;
end

end Lo = Dtilde + sum;

9.2.10 clip.m

%%%
% clip.m %
% created: July 2, 2007 %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
% Function that ensures that NaN is not ever a problem
% clips code and keeps it under control
function C = clip(m) [x y] = size(m);
B = ones(x,y)*10^7;
C = sign(m).*min(abs(m),B);

9.2.11 FinalLLR.m

%%%
% FinalLLR.m %
% created: July 2, 2007 %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
function Final = FinalLLR(Dtilde,Le,K)
% Takes Dtilde and the Le and makes the final decision on what the message was
[m n] = size(Le); sum = zeros(1,n); Final = zeros(n); for k=1:K

sum = Le(k,:) + sum;
end Final = sum + Dtilde;

44

9.3 Permutations

This section documents the codes of the various permutations used in our research.

9.3.1 Right to Left/Top to Bottom

Reads the matrix from right to left, top to bottom as the permutation.

%%%
% RLTB.m %
% Right to Left/Top to Bottom Classical Block Permutation %
% %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
function temp = RLTB(M) [m n] = size(M); x = 1; y = n;
% Reads the matrix Right to Left/Top to Bottom as the Permutation
for i=1:m

for j=1:n
temp(i,j) = M(x,y);
x = x+1;
if x > m

x = 1;
y = y-1;

end
end

end

9.3.2 Right to Left/Bottom to Top

Reads the matrix from right to left, bottom to top as the permutation.

%%%
% RLBT.m %
% Right to Left/Bottom to Top Classical Block Permutation %
% %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
function temp = RLBT(M) [m n] = size(M); x = m; y = n;

% Reads the matrix Right to Left/Bottom to Top as the Permutation
for i=1:m

for j=1:n
temp(i,j) = M(x,y);
x = x-1;
if x <= 0

45

x = m;
y = y-1;

end
end

end

9.3.3 Left to Right/Top to Bottom

Reads the matrix from left to right, top to bottom as the permutation.

%%%
% LRTB.m %
% Left to Right/Top to Bottom Classical Block Permutation %
% %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
function temp = LRTB(M) [m n] = size(M) x = 1; y = 1;
% Reads the matrix Left to Right/Top to Bottom as the Permutation
for i=1:m

for j=1:n
temp(i,j) = M(x,y);
x = x+1;
if x > m

x = 1;
y = y+1;

end
end

end

9.3.4 Left to Right/Bottom to Top

Reads the matrix from left to right, bottom to top as the permutation.

%%%
% LRBT.m %
% Left to Right/Bottom to Top Classical Block Permutation %
% %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
function temp = LRBT(M) [m n] = size(M) x = m; y = 1;
% Reads the matrix Left to Right/Bottom to Top as the Permutation
for i=1:m

for j=1:n

46

temp(i,j) = M(x,y);
x = x-1;
if x <= 0

x = m;
y = y+1;

end
end

end

9.3.5 Permutation Presented by Tejas Bhatt and Victor Stolpman

This code models the structured permutation presented by Tejas Bhatt and Victor Stolpman.

%%%
% BhattPermutation.m %
% July 16, 2007 %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
function Mat = BhattPermutation(I,J,K, PrimeI, PrimeJ)
% model of the permutation presented
% by Tejas Bhatt and Victor Stolpman in ’Structured
% Interleavers and Decoder Architectures for Zigzag Codes’
% and in the US patent US 2007/0067697Al
% I,J: Block Length of the message
% K: number of permutations
% PrimeI, PrimeJ: the new shape of the matrix to use for permuting the IxJ
% matrix.

counter = 1; for i=1:PrimeI
for j=1:PrimeJ

M(i,j) = counter;
counter = counter+1;

end
end
%% Finding p’s
counter = 1; for i=1:I

if gcd(i,I)==1
p(counter) = i;
counter = counter + 1;

end
end
%% Find SjK
bool = 0; ind = 0; maxind =length(p);

47

% find the first prime number
while (bool == 0 && ind < maxind)

ind = ind + 1;
v = 1:PrimeJ;
S(1,:) = mod(v.*p(ind),PrimeI);
bool = conditionA(S(1,:));

end if ind == maxind
tempM = ’ERROR-out of prime numbers’;
return

end
% find K-1 more prime numbers
if K>1

for k=2:K
bool1 = 0;
bool2 = 0;
while(bool1==0 && bool2==0 && ind < maxind)

ind = ind + 1;
v = 1:PrimeJ;
S(k,:) = mod(v.*(ind),PrimeI);
% make sure that there is no repeated Sk values
bool1 = conditionA(S(k,:));
j = 1;
while(j<=length(S)&&bool==0)
% makes sure that there will be no bits in the same parity more than once

bool2 = conditionB(S(k,:),S(j,:));
j = j+1;

end
if ind == maxind

tempM = ’ERROR-out of prime numbers’;
return

end
end

end
end
%% Perform Column Shift--yo
%temp = reshape(M’,PrimeI,PrimeJ);
for k=1:K

for j=1:PrimeJ
temp(:,j,k) = circshift(M(:,j),S(k,j));

end
end
%% Bit-reversing
[Y,Mult] = bitrevorder([1:PrimeI]); for i=1:PrimeI

temp2(i,:,:) = temp(Mult(i),:,:);
end

48

%% Flatten the matrix----raaaaaaaaawwwwwwwrrrr---big dino feet!

for k=1:K
tempM(:,:,k) = reshape(temp2(:,:,k)’,1,I*J);

end
%% Make it a better format
Mat = un3d(tempM);

9.3.6 conditionA.m

%%%
% conditionA.m %
% July 16, 2007 %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
function bool = conditionA(v)
% takes a vector and makes sure there are no repeated values in the vector
bool = 1; for i=1:length(v)-1

for j=i+1:length(v)
if v(i) == v(j)

bool = 0;
end

end
end

9.3.7 conditionB.m

%%%
% conditionB.m %
% July 16, 2007 %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
function bool = conditionB(v1,v2)
% checks and makes sure two infor bits will only act in the same column row
% once
bool = 0; for i=1:length(v1)-1

for j=i+1:length(v1)
if v1(i)-v1(j) == v2(i)-v2(j)

bool = 1;
end

end
end

49

9.3.8 un3d.m

%%%
% un3d.m %
% July 16, 2007 %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
function Mat = un3d(v)
% resizes a 3D array into a 2D array
[I J K] = size(v); for k=1:K

Mat(k,:) = v(:,:,k);
end

9.3.9 Randomly Permuting Each Column

Function that randomly permutes each individual column of the matrix, not allowing the
the entries each column to leave their respective column.

%%%
% randcolperm.m %
% July 16, 2007 %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
function [temp4 disp]= randcolperm(I,J,K)
% Randomly permutes values within a column for each column, no values are
% allowed to leave their respective column. It then returns a permutation.
%% Make General Matrix
M = zeros(I,J); counter = 1; for i=1:I

for j=1:J
M(i,j) = counter;
counter = counter + 1;

end
end
%% Start making K permutations
for k=1:K
%% Declare Random Permutations for Each Column j

for j=1:J
Pi(j,:) = randperm(I);
disp(k,j) = fastdisp(Pi(j,:));

end
%% Take the transpose of the matrix and Permute the matrix

temp1 = M’;
temp2 = M’;
for j=1:J

50

temp2(j,:) = Permute(temp1(j,:),Pi(j,:));
end
temp3 = temp2’;

%% Flatten the new Matrix
temp4(k,:) = reshape(temp3’,1,I*J);

end

9.3.10 Randomly Permute Each Column with a Restriction

Function that randomly permutes each individual column of the matrix, not allowing the
the entries each column to leave their respective column. The restriction is that rows can
not have the same two information bits in di�erent permutations’ rows more than two times.

%%%
% restrictedrandcolperm.m %
% July 17, 2007 %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
function perm= restrictedrandcolperm(I,J,K)
% Randomly permutes values within a column for each column, no values are
% allowed to leave their respective column. It then returns a permutation.
% makes sure no more than rows of each permutation has no more than two
% shared information bits.
%% Make General Matrix
M = zeros(I,J); counter = 1; for i=1:I

for j=1:J
M(i,j) = counter;
counter = counter + 1;

end
end
%% Start making K permutations
k = 1; while k<=K
%% Declare Random Permutations for Each Column j

for j=1:J
Pi(j,:) = randperm(I);

end
%% Take the transpose of the matrix and Permute the matrix

temp1 = M’;
temp2 = M’;
for j=1:J

temp2(j,:) = Permute(temp1(j,:),Pi(j,:));
end
temp3 = temp2’;

%% Determine if the no rows have repeat columns

51

if k~=1
bool = 1; %assume the permutation is good
kd = 0;
while(kd<k-1 && bool == 1)

kd = kd+1;
for t1 = 1:I

t2 = 0;
while(t2<I&&bool==1)

t2 = t2+1;
difference = temp3(t1,:)-storage(t2,:,kd);
counter = 0;
for t3=1:length(difference)

if difference(t3)==0
counter = counter+1;

end
end
if counter > 2

bool = 0;
end

end
end

end
if bool == 1

storage(:,:,k) = temp3(:,:);
k = k+1;

end
else

storage(:,:,k) = temp3(:,:);
k = k+1;

end
end perm = storage;
%% Flatten the matrix----raaaaaaaaawwwwwwwrrrr---big dino feet!

for k=1:K
tempM(:,:,k) = reshape(storage(:,:,k)’,1,I*J);

end
%% Make it a better format
perm = un3d(tempM);

52

9.3.11 swapperperm.m

%%%
% swapperperm.m %
% %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
function result = swapperperm(v,K)
% takes a vector, and for every ten values the first five values of that
% block are switched with the last five values of the block. Same idea with
% the remainder if the block length is not an a factor of ten, but switches
% the last five values with the remaining values from the last block.

n = size(v);

r = mod(n(2),10); % find the remainder of the size
% divided by 10

j = 6; % initial value of 10
k = 0; % k is initially 1

for i=1:(n(2)-r) % look at the values up to the remainder
if j-k <= 10 % ensures the values are only swapped once

a(j) = v(i); % assign v(i)’s value to a temp variable
a(i) = v(j); % assign a(i)
j = j+1;

end
if mod(i,10) == 0% resets the process for each multiple of 10

k = k + 10;
j = 6 + k;

end
end

j = n(2) - r + 1; % parameters for dealing with the remainder
b = 0; % j is where the remainder starts
while j <= n(2)

a(j) = v(n(2)-b); %assigns value to array
j = j+1;
b = b+1;

end for k =1:K result(k,:)= a(1,:); end

9.3.12 Magic Square Permutation

Creates a Magic Square and returns the square as a row vector used as a permutation.

53

%%%
% magicsquareperm.m %
% %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%
function ft = magicsquareperm(n)
% a generates a n by n magic square and turn it into a 1 dimensional vector
% used as a permutaiton.
ft = zeros(1,n); v = magic(n);
%first start with a zero vector of length 1000000.
for j = 1:n

ft(n*j - (n-1):n*j)=v(j,:);
end;

9.3.13 throwupperm.m

%%%
% throwupperm.m %
% Dated: June 24, 2007 %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%

function T = throwupperm(N)

%given a random message throwupperm swaps the rows of a matrix bottom up so
%that we get diffrent parodies

[A B]= size(N) M = zeros(A,B) k=1 for i= 1:A
for j = 1:B
M(i,j) = k;
k = k+1;
end

end

T(1,:) = flatten(M);

k = 2; for i = A:-1:2
M = swaprows(M,i,1)
c = T(k-1,:) - flatten(M)
for i = 1: (ceil(mod(rand*10000,B)) + 2)

%pick a random row and shift it

54

w = (ceil(mod(rand*10000,A)))
x=M(w,:);
M(w,:)=horazontalswrill(x’);
%pick a random row and swril it

end
if find (c) ~= 0
T(k,:) = flatten(M); %turn it into a permutation
k=k+1;
end

end

9.3.14 fatten.m

%%%
% flatten.m %
% created: June 30, 2007 %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%

function T = flatten(M)

%takes a message and flattens it
[A B] = size(M)

T =reshape(M’, 1,A*B)

9.3.15 swapprows.m

%%%
% swapprows.m %
% created: June 30, 2007 %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%

function r = swaprows(M, a, b)
% given a matrix M swaps rows a and b

temp(1,:) = M(a,:); M(a,:) = M(b,:); M(b,:) = temp(1,:); r =
M;

55

9.3.16 horazontalswrill.m

%%%
% horazontalswrill.m %
% created: June 30, 2007 %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%

function T = horazontalswrill(n)

%takes a perumtation n and swirls it around by a random amount

[A B] = size(n)

c = ceil(mod(rand*rand*1000,B-1))

T = circshift(n,c);

9.4 Dispersion and their Measurements

9.4.1 sumvarows.m

This function calculates variance of a permutation.

%%%
% sumvarows.m %
% created: June 30, 2007 %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%

function [varsum, T] = sumvarows(m,rows,cols)

[A B] = size(m); % create said matrix
k=1; w = zeros(rows,cols); m(1,:); for a = 1:rows

for b = 1:cols
w(a,b) = (m(1,k)); %puts the elements of the permutation in the matrix
%as if they were apart of the identity function
k = k+1;

end
end

if (A> 1)
for t = 2:A

k = 1;

56

temp =zeros(rows,cols);
for a = 1:rows

for b = 1:cols
temp(a,b) = ceil(m(t,k)/cols);
k = k+1;

end
end
w = [w;temp]; %append the new matrix on top of the old one

end
end [Q U]= size(w);

for i = 1: Q
T1(i) = var(w(i,:)); %take the variance
T(i) = T1(i)*(U-1)/(U);%multiply by constat to turn it into population variance

end

9.4.2 dispofistofpermswithinvers.m

%%%
% dispoflistofpermswithinvers.m %
% created: June 30, 2007 %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%

function R = dispoflistofpermswithinverse(n)
%this function given a list of permutations
%computes the dispersion every permutations with the inverse
%of another permutation.

[A,B] = size(n); T=zeros(A,B);

for i = 1:A
for j = 1:B
if(j<i)
temp = compute2perms(n(i,:),inverseperm(n(j,:)));
%compute the values of the matrix
T(i,j)=fastdisp(temp(1,:));
end
end
end

R = sum(sum(T))/(A*(A-1)/2); %take the average

57

9.4.3 inverseperm.m

%%%
% inverseperm.m %
% created: June 30, 2007 %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%

function IP = inverseperm(PI)
%computes the inverse perm
[A B] = size(PI);

IP = zeros(1,B); % loop used to determine the inverse permutation
IP(PI(1,:)) = 1:B;

9.4.4 compute2perms.m

%%%
% compute2perms.m %
% created: June 30, 2007 %
% Applied Mathematical Science Institute 2007 %
% Team Special Ed %
%%%

function T = compute2perms(a,b)
%given two permutations of the same block length this function puts the
%identity through 1 permutation the the other

[A B] = size(a);

for i = 1:B
T(b(i)) = a(i);

end

58

9.5 Triangular Distance and Random Walks

This program uses Triangular Distance Equations generated by Random Walks along the
number line from -n to n, defned by user input. Random Walks on the set � �
−n . . . −2 −1 0 1 2 . . . n produced more than the Triangular Distance tables

for the permutations on Sn. The program determines whether or not the steps taken by
the Random Walk are in fact a Triangular Distance, and prints out each solution and total
number of solutions. C++ was used due to the abstract data type Doubly Linked Lists and
the fexibility of this kind of data type.

/**/
/* Random Walks Using Linked Lists */
/* by */
/* Applied Mathematical Science Institute */
/* Team Special Ed */
/* created: 7/12/2007 */
/* modified: 7/12/2007 */
/* This program uses random walks under set */
/* conditions to generate all of the random */
/* permutations of the Symmetric Group n */
/* using Triangular Distance Tables */
/**/

#include <iomanip> #include <iostream> #include <fstream>

// Create a structure to store each point on
// the numberline.
struct Node {

int n,visit;
bool visited;
Node *Next,*Prev;

};
//FUNCTIONS
void initialize(); // initializes Head and Tail

Nodes void create(int sample); // creates the number line

from n void marknode(int n, bool value); // marks the specified

node true or false Node next(Node *temp, int step);
// moves to next node specified by step

Node prev(Node *temp, int step);
//moves to prev node specified by step
bool isaperm();
// verifies that a permutation was created

59

void search(Node *t, int max, int counter);
// searches for permutations

//GLOBAL VARIABLES
Node Head; // The top node represents 0 on
the number line Node Tail; // The tail node set to 1000000

// as "wall" between -n and n.

int *iter,*use; // pointers that correspond to
// the amount each step
// can be used.

int *diag; // pointer that corresponds to
// the steps or distances
// on the diagonal

int *visitednodes; // pointer that corresponds to
// the nodes visited

int *perm;
// pointer that corresponds with the permutation int solutions, sample;
// number of solutions and sample size respectively

using namespace std;

void initialize() {
Head.n = 0; // set Head equal to 0
Head.Next = Head.Prev = &Tail; // set the Head pointers to point to the Tail
Tail.Next = Tail.Prev = &Head; // set the Tail pointers to point to the Head
Tail.n = 1000000; // create a really tall "wall"
Tail.visited = true; // set Tail’s visited value to true--no one likes Tail
solutions = 0; // no solutions...yet

}

void create(int sample) {
Node *temp1,*temp2; // temp Node pointers
temp1 = &Head; // set temp1 to point at Head
int i; // loop variable
for(i=1;i<=sample;i++) // create the positive side of the number line
{

temp2 = new Node;
temp2->Next = temp1->Next;
temp1->Next->Prev = temp2;
temp1->Next = temp2;
temp2->Prev = temp1;

60

temp2->n = i;
temp2->visited = false;
temp2->visit = 0;
temp1 = temp2;

}
temp1 = &Head; // reset temp1 to point back at Head
for(i=1;i<=sample;i++) // create the negative side of the number line
{

temp2 = new Node;
temp2->Prev = temp1->Prev;
temp1->Prev->Next = temp2;
temp2->Next = temp1;
temp1->Prev = temp2;
temp2->n = (-1)*i;
temp2->visited = false;
temp2->visit = 0;
temp1 = temp2;

}
}

void marknode(int n, bool value) {
Node *temp;
temp = Tail.Prev;
while(temp->n!=n)
{

temp = temp->Next;
}
temp->visited = value;
if(value)

temp->visit += 1;
else

temp->visit -= 1;
}

Node next(Node *temp, int step) // where to start and how many
// "steps" forward

{
if(temp->n == 1000000) // make sure the "wall" isn’t climbed
{

return Tail;
}

int i;
Node *temp2;
temp2 = temp;

61

for(i=1;i<=step;i++) // "step" though each node
{

temp2 = temp2->Next;
if(temp2->n==1000000) // loop hit the "wall"
{

return Tail;
}

}
return *temp2; // return end point

}

Node prev(Node *temp, int step) // where to start and how many
// "steps" backwards

{
if(temp->n == 1000) // make sure the "wall" isn’t climbed
{

return Tail;
}
int i;
Node *temp2;
temp2 = temp;
for(i=1;i<=step;i++) // "step" though each loop
{

temp2 = temp2->Prev;
if(temp2->n==1000)
{

return Tail;
}

}
return *temp2; // return end point

}

bool isaperm()
{

int i; // i is the first number to use in the permutations
int ind; // navigator of the indexes of the pointer arrays
bool flag; // determines if permutation is found
for(i=1;i<=sample;i++) // start at one and go to n
{

ind = 1; // start at index 1 for diag and perm
flag = true; // initialize flag as true
perm[0] = i; // initialize first perm entry as i
while(flag)
{

perm[ind] = perm[ind-1] + diag[ind-1];

62

e

// determine the next entry using the corresponding diag entry and prev perm

// make sure perm value is within its limits
if(perm[ind] <= 0 || perm[ind]>sample)

flag = false;
if(ind==sample-1 && flag) // PERMUTATION FOUND!
{

return true;
}
ind++; // increment the index

}
}
return false; // no permutation found

}

void search(Node *t, int max, int counter) // recursion!
{
// takes a starting position, max steps and largest step and counter

if(counter == max) // took max amount of steps
{

if(abs(visitednodes[max-1]-visitednodes[0]) <= max && isaperm())
{

// two conditions needed to be meet: abs val of largest step can be no larger than th
// max step size and it must be a permutation

solutions++; // increase solutions counter
//print solution

cout << "\nSolution " << solutions << " is: " << "\nThe Diagonal is: ";
for(int i=0;i<=max-1;i++)
{

cout << diag[i] << " ";
}
cout << "\nThe Permutation is: ";

for(int j=0;j<=sample-1;j++)
{

cout << perm[j] << " ";
}

cout << "\nThe Nodes visited were: ";
for(int i=0;i<=max-1;i++)
{

cout << visitednodes[i] << " ";
}
cout << "\n";

}
return;

}

63

// start recursion
for(int i=1;i<=max;i++) // step sizes
{

if(use[i-1]+1<=iter[i-1])
{

use[i-1] += 1; // mark the node used one more time
marknode(t->n,true); // mark the node visited
Node *temp;
temp = &next(t,i);
if(temp->visited!=true) // if next node isn’t visited go to it
{

diag[counter] = i; // set diag to the i step value
visitednodes[counter] = temp->n; // mark visit
search(temp,max,counter+1); // recurse

}
temp = &prev(t,i);
if(temp->visited!=true)
{

diag[counter] = (-1)*i; // set diag to the i step value
visitednodes[counter] = temp->n; // mark visit
search(temp,max,counter+1); // recurse

}
marknode(t->n,false); // remark the node false--I was never there
use[i-1] -= 1; // take back of the use

}
}

}

void main() {
//ask for the set size and place it into sample
cout << "Please input the set size:";
cin >> sample;
initialize();
create(sample-1);
// create temp. arrays
iter = new int [sample-1];
use = new int [sample-1];
diag = new int [sample-1];
visitednodes = new int [sample-1];
perm = new int [sample];
// initialize the arrays
for(int i=0;i<=sample-1;i++)
{

iter[i] = abs((sample-1)-i);
use[i] = 0;

64

perm[i] = 0;
}
search(&Head,sample-1,0); // begin long search
// final output
cout << "\nThe number of solutions: " << solutions << "\n";
cout << "\n";
int x = 1;
Node temp2 = Head;
// message to prevent the program from closing at the end when running the
// executible file
cout << "\n\n Reached the end of the program.

Enter any character then ’Enter’ to exit: ";
cin >> x;
//delete arrays--deny all evidence of their existence
delete [] iter;
delete [] use;
delete [] diag;
delete [] visitednodes;
delete [] perm;

}

65

References

[Bh] Bhatt, Tejas; Stolpman, Victor. Structured Interleavers and Decoder Architectures for
Zigzag Codes, IEEE Conference Proceedings on Signals, Systems and Computers, Oct.-
Nov. 2006, pp.99-104.

[Do] Dollo�, Jason; Kenz, Zackary; Rische, Jacquelyn; Rogers, Danielle Ashley; Smith,
Laura; Mosteig, Edward. Algebraic Interleavers in Turbo Codes. California State Poly-
technic University, Pomona and Loyola Marymount University.

[He] Heegard, Chris; Wicker, Stephen B. Turbo Coding, Kluwer Academic Publishers, USA,
1999.

[Jo] Jones, Alaina; Moreno, Benjamin; Smith, Laura; Viteri, Andrea; Yao, Kouadio David;
Mosteig, Edward. Exploring Interleavers in Turbo Coding, 2005 AMSSI Technical Report,
available at www.amssi.org.

[Li] Little, John B.; Mosteig, Edward. Error Control Codes from Algebra and Geometry–
Notes for SACNAS Minicourse, Oct. 2003.

[Tu] Tucker, Alan. Applied Combinatorics, 5 ed., Wiley, 2006.

[Pi(1)] Ping, Li; Chan, Sammy; Yeung, Kwan L. Iterative Decoding of Multi-Dimensional
Concatenated Single Parity Check Codes, 1998 IEEE International Conference on Com-
munications, vol. 1, pp. 131-135.

[Pi(2)] Ping, Li; Huang, Xiaoling; Phamdo, Nam. Zigzag Codes and Concatenated Zigzag
Codes, IEEE Transactions on Information Theory, vol. 47, no. 2, Feb. 2001, pp. 800-807.

66

www.amssi.org

