
Exploring Interleavers in Turbo Coding

California State Polytechnic University, Pomona

and

Loyola Marymount University

Department of Mathematics Technical Report

Benjamin Moreno∗ , Laura Smith, † Andrea Viteri‡ , Kouadio David Yao,§

Applied Mathematical Sciences Summer Institute
Department of Mathematics & Statistics

California State Polytechnic University Pomona
3801 W. Temple Ave.
Pomona, CA 91768

Faculty Mentor: Dr. Edward Mosteig ¶

Research Assistant: Alaina Jonesk

August 2005

∗California State Polytechnic University, Pomona
†Western Washington University
‡The College of St. Catherine
§University of Arkansas at Little Rock
¶Loyola Marymount University, Los Angeles
kTexas A&M University

1

Abstract

The primary aim of coding theory is the successful transmission of information
across noisy channels. For half a century, coding theory has been used in a variety
of applications such as communications, the design of computer memory systems, and
compact discs. Our research focuses on a class of codes called turbo codes, which are
currently used in deep-space and satellite communications. In particular, we examine
one component of these codes called an interleaver; this component permutes data
before transmission. We study properties of interleavers such as spread, dispersion,
and cyclic decomposition. The project focuses on the effectiveness of turbo codes,
examining how the abovementioned characteristics of interleavers affect the error rates.
We use computer simulations to test our theoretical findings.

2

Turbo Codes

Coding is a topic within Coding Theory. Coding theory consists of successfully trans-
message through a noisy channel. A message is a block of data that consists of bits.

block of data is sent through the encoder, some redundancy occurs. Therefore,
of the original message increases. While this new block of data is sent through

channel, some of the bits might become corrupted. Once the decoder receives the
message, it will have a greater chance to retrieve the original message due to the redundancy

by the encoder. Figure 1 depicts the function of turbo codes, where M is the
is the encoder, I is an interleaver, and D is the decoder.

M E

M

E

Code
Word

M

M

I

Rec
Word

MD

Noise

1

Turbo
mitting a
When this
the length
the noisy

generated
message, E

Figure 1: The Function of Turbo Codes

The process begins by making three copies of the message one wishes to communicate.
The first copy remains untouched. The second is sent through an encoder that takes a
message and produces another message. The third copy is sent through an interleaver,
which rearranges the order of the elements, and is then sent through the same encoder as
the second copy of the message. The type of encoder used in this project employs the use
of shift registers. The best way to understand the function of shift registers is to look at an
example.

Example 1. Let 0101011 be the message to be processed, and let the encoder be as shown
in Figure 2.

3

Message in

+

Message

Out

Shift
Registers

Figure 2: Example Encoder

register initially contains zero. Then the rightmost entry of the message en-
registers, pushing the contents of each register along the path of the arrows.

shift registers will appear as in Figure 3.

1 000101011

+

1

1
0 0

1 0

0

1

Each shift
ters the shift
Consequently, the

Figure 3: A Message in a Shift Register

Notice that the output is 1. The next entry then enters the registers and the process
repeats. Once the entire message has entered, zeros follow until all shift registers have a zero
in them.

4

represents the input and output.

Input Shift Register Output
000

1 100 1
1 110 1
0 011 1
1 101 1
0 010 0
1 101 0
0 010 0
0 001 1
0 000 1

Table 1: Summary of Example 1

message is 111100011.

registers have feedback. This is where some of the entries in shift registers
be incorporated into other shift register entries. Figure 4 is one example

whose shift registers have feedback.

Message

in

+

+

+

Message

Outputted

Table 1

The encoded

Some shift
may be sent back to
of an encoder

Figure 4: A Shift Register with Feedback

The shift registers can be thought of as polynomials, where the position of the element
that is about to enter the first shift register can be considered as 1, the first shift register as
D, the second shift register as D2 , and so forth. This is illustrated in Figure 5.

5

Message

Entry

D D2 D3

Figure 5: Shift Registers as Polynomials

Consequently, the encoder can be described by a rational function of the form

gn(D)
.

gd(D)

Then gn(D) is the sum of the registers that provide the output. In example 2,
gn(D) = 1 + D2 . This is obtained by looking only at the register that provide the output
while ignoring any feedback. In addition, gd(D) is the sum of the registers that produce
feedback. In this case, gd(D) = 1 + D2 + D3 . Consequently, this encoder is 1+D2

This
1+D2+D3 .

project utilized the following encoder:

1 + D + D2

.
1 + D2

Once all three copies of the original message have been processed accordingly, they are
combined to produce a codeword. In this project, the codeword takes all entries of the
first copy of the message and every other entry of the altered second and third messages.
Therefore, the code word that is sent is twice as long as the original message. The codeword
is sent over a noisy channel and then processed by a decoder. The goal is to obtain the
original message despite any corruption that might occur in transmission.

Example 2. A blocklength of 4 is chosen and the permutation π used is given by

π(v0, v1, v2, v3) = (v0, v3, v2, v1).

A block of data 1011 is taken and sent through the turbo code (refer to Figure 1). Three
copies of the message are made. The first copy is left intact, and the second one is sent
through the encoder in Figure 4. In this case, the message 1011 is sent through the encoder,
and 1100 is the output. The third copy of the message is sent through the interleaver, where
it is permuted, yielding 1110. This new message is then sent through the same encoder used
for the second copy, producing another encoded block of data, 1110. In last step the three
processed blocks of data are combined to give 11011010 which is the codeword that is sent
through the noisy channel.

This project examines the effectiveness of interleavers. In order to determine which inter-
leaver produces the best performance, various error rates that are run through simulations
were examined. A good performance will occur when the error rates are small. Interleavers
can be produced randomly or systematically. Random interleavers, however, use up much
memory since they must be stored for decoding. For this reason, it is worthwhile to study
systematic interleavers. Therefore, this project focuses on systematic interleavers, specifically
those which utilize finite fields. Fields will be discussed in the next section.

6

2 Fields

The function of an interleaver is to permute blocks of data. Since an interleaver is a permu-
tation of data, it is a bijection from one set to another. Consequently, finite fields can be
used to construct interleavers.

Definition 3. Let F be a set with two operations defined on the set, denoted by “+”
(addition) and “·” (multiplication). By definition, F is a field if it satisfies the following
axioms for all a, b, c ∈ F:

(i) a · b ∈ F, and a + b ∈ F (closure)

(ii) a + b = b + a, and a · b = b · a (commutativity)

(iii) (a + b) + c = a + (b + c) and (a · b) · c = a · (b · c) (associativity)

(iv) a + 0 = a, a · 1 = a, where 0, 1 ∈ F (identity)

(v) For all a ∈ F, there exists −a ∈ F such that a + (−a) = 0 (additive inverses)

(vi) a · (b + c) = (a · b) + (a · c) (distributivity)

(vii) For every nonzero element a ∈ F, there exists b ∈ F such that a · b = 1, denoted as
b = a−1 (multiplicative inverses)

These axioms are satisfied for the common fields: the real numbers R, the rational
numbers Q, and the complex numbers C. There are other examples of fields that we introduce
in the next section.

2.1 Modular Arithmetic on Zq

Let Zk be the set of elements defined by Zk = {0, 1, ..., k − 1}.
An equivalence class on Zk is defined as follows: m ≡ n mod k whenever k divides m−n.

This is equivalent to saying n is the remainder when m is divided by k.

Example 4. Notice that 11 ≡ 4 mod 7 since 11 − 4 = 7 and 7 divides 7.

Arithmetic over Zk is defined in the following way. Given a, b ∈ Zk, addition is defined
as a + b = (a + b) mod k and multiplication is defined as a · b = (a · b) mod k.

Example 5. Consider Z4 = {0, 1, 2, 3}. Let a = 2 and b = 3. Here 2 + 3 = 5, but 5 ≡ 1
mod 4. Similarly, 2 · 3 = 6, but 6 ≡ 2 mod 4. Therefore, in Z4, one defines 2 + 3 =1 and 2
· 3 = 2.

7

2.2 Finite Fields

A finite field is defined to be a field with a finite number of elements.

Theorem 6. The set Zm is a field if and only if m is prime.

For other cases, the following applies:

Theorem 7. There exists a finite field with q elements if and only if q = pr , where p is
prime.

Example 8. Notice that 8 = 23 , so there exists a finite field with 8 elements. There does
not exist a finite field of 12 elements, however, because 12 = 3 ·22 , which cannot be expressed
in the form pr .

Define Fq to be a finite field with q elements.

2.3 Irreducibility

The collection of all polynomials in indeterminate x with coefficients in the field F is denoted
by F[x].

A polynomial f(x) is said to be reducible over F if there exist nonconstant polynomials
g(x), h(x) ∈ F[x] such that f(x) = g(x)h(x). A polynomial is irreducible if it is not
reducible.

Example 9. Note that f(x) = (x2 − 1) = (x + 1) · (x − 1), which implies f(x) is reducible
over R. However, g(x) = (x2 + 1) = (x + i) · (x − i) is irreducible over R but reducible over
C.

Theorem 10. If a polynomial of degree at most 3 has no roots, then it is irreducible.

Proof. Let P (x) be a reducible polynomial over F of degree at most 3. Then there exists
f(x), g(x), where 1 ≤ deg f(x), deg g(x) ≤ 2 and f(x) · g(x) = P (x). It follows that
deg f(x) + deg g(x) = P (x) ≤ 3. Without loss of generality, assume that deg f(x) = 1.

Letf(x) = β1x + β0, where β0, β1 ∈ F.

Note that −β1
−1 · β0 ∈ F. Hence,

f(−β1
−1β0) = β1(−β1

−1β0) + β0 = −β0 + β0 = 0,

which implies

P (−β−1β0)1 = f(−β−1β0) · g(−β−1β0)1 1

= 0 · g(−β−1β0)1

= 0.

Thus, −β1
−1β0 is a root of P (x). Therefore by the contrapositive, if a polynomial with a

degree of at most 3 or less has no roots, then it is irreducible.

8

Example 11. It can be shown that P (x) = x3 + x + 1 is irreducible over F2. Evaluate P (x)
at 0, 1. By substitution, P (0) = 03 + 0 + 1 6≡ 0 mod 2. This implies that 0 is not a root of
P (x). Now, P (1) = 13 +1+1 = 3 ≡ 1 6≡ 0 mod 2. Then 1 is not a root of P (x). Therefore,
P (x) has no roots in F2. By the above theorem, P (x) is irreducible over F2.

Example 12. One can verify whether f(x) = x4 + x + 1 is irreducible over F2. Begin
by finding all the nonconstant polynomials with degree of at most 3. Suppose f(x) an be
factored as f(x) = g(x)h(x), where g(x) and h(x) are nonconstant.
Since deg f(x) = 4, deg g(x)h(x) = 4, it follows that 0 < deg g(x), deg h(x) < 4. Then the
possible factors are the following:

2 2 2 3 3 3 3 2 3 2 x, x+1, x , x 2+1, x +x, x +x+1, x , x 3+1, x +x 2+1, x +x+1, x +x +x+1, x +x +x.

If f(x) = g(x)h(x), then there is no need to test factors of degree 3. This is because testing for
polynomials of degree 1 will account for both factors of degree 1 and degree 3. Furthermore,
one needs to only test those factors that are not factorable themselves. For instance, if x2

divides a polynomial, then x does too. Hence, it is only necessary to check the following
factors:

x, x + 1, x 2 + x + 1.

If none of these prospective factors divide f(x), then f(x) is irreducible. Dividing x4 + x +1
by x yields x3 + 1 with remainder 1, meaning that x is not a divisor. In addition, dividing
x4 + x + 1 by x + 1 results in x3 + x2 + x with remainder 1, meaning that x + 1 is not a
divisor. One concludes that f(x) is irreducible over F2

2.4 Finite Fields of the Form Fpr

Definition 13. Let h(x) be an irreducible polynomial over Fp[x] and let r = deg h(x). The
set Fp[x]/hh(x)i is defined to be the collection of all polynomials over Fp of degree at most
r − 1; that is,

Fp[x]/hh(x)i = {βr−1α
r−1 + . . . + β0 | βi ∈ Fp}, where α is an indeterminate.

Note that h(x) does not affect the definition of Fp[x]/hh(x)i other than the fact that it
restricts the degree of the polynomials in the set. In the next section, h(x) will be used to
define additive and multiplicative structures on Fp[x]/hh(x)i.

For example, F23 [x]/hx3 + x2 + 1i = {0, 1, α, α + 1, α2 , α2 + 1, α2 + α, α2 + α + 1}.
Theorem 14. Given two irreducible polynomials of the same degree, h1(x), h2(x) ∈ Fp[x],
Fp[x]/hh1(x)i and Fp[x]/hh2(x)i are isomorphic.

Consequently, since Fp[x]/hh1(x)i and Fp[x]/hh2(x)i are isomorphic whenever
r = deg h1(x) = deg h2(x), the notation Fpr is used for all isomorphic copies of this field.

9

2.5 Addition and Multiplication in Finite Fields

The addition of elements in Fpr is straightforward. Adding in Fpr requires modular arithmetic
to reduce resulting coefficients to elements in the field.

Example 15. Let α3 + α2 + 1 and α2 + α + 1 be elements of F24 = F2[x]/hx4 + x3 + 1i. In
this case p = 2. Adding these two elements together results in α3 + 2α2 + α + 2. But
2 ≡ 0 mod 2. Therefore the final result is α3 + α.

If two given polynomials in c are multiplied together in the usual manner, the resulting
degree might be larger than deg h(x) − 1, in which case Fpr = Fp[x]/hh(x)i is not closed
under multiplication. Therefore, multiplication must be defined in a different manner.

Given f(α), g(α) ∈ Fp[x]/hh(x)i, divide f(α) · g(α) by h(α) to get a quotient and
remainder:

f(α) · g(α) = q(α) · h(α) + r(α)

where r(α) = 0 or deg r(α) < deg h(α). In Fp[x]/hh(x)i, f(α) · g(α) is defined to be the
remainder r(α).

Example 16. Consider F2[x]/hh(x)i where h(x) = x4 + x3 + 1. Then

(α3 + α + 1) · (α2 + 1) = (α5 + α2 + α + 1)

= (α + 1) · (α4 + α3 + 1) + (α3 + α2).

Thus, the product (α3 + α + 1) · (α2 + 1) is defined to be (α3 + α2).

pr −1 − 1Theorem 17. Over Fp, all irreducible polynomials of degree r divide x

pTo find all the irreducible polynomials of degree r, factor x
r −1 − 1.

2.6 Generating a field Fpr with α

It is possible to generate the nonzero elements of Fpr using the powers of an element α.

Definition 18. An irreducible polynomial h(x) ∈ Fp[x] of degree r is called primitive if
Fp[x]/hh(x)i = {0, 1, α, α2 , . . . , αpr−2}.
Theorem 19. For every prime p and positive integer r, there exists a primitive polynomial
h(x) ∈ Fp[x] of degree r.

Example 20. Consider F8 = F23 and h(α) = α3 + α2 + 1. The members of this field are as
follows:

10

0 = 0

α0 = 1

α1 α1 =

α2 α2 =

α3 = α2 + 1

α4 α2 = + α + 1

α5 = α + 1

α6 α2 = + α

α7 = 1.

Therefore,
F8 = {0, 1, α, α2, α3, α4, α5, α6},

which can also be expressed as

F8 = {0, 1, α, α2, α2 + 1, α2 + α + 1, α + 1, α2 + α}.

3 Permutations

In order to construct these permutations, finite field are used. In the process of examining
finite fields, it was natural to take a look at sets of the form Zq because they sometimes are
finite fields. It was also of interest to find out any condition between the set Zq and the
monomial xi that could be used to create the permutations.

3.1 Theorems of Zq

Theorem 21 (The Prime Factorization Theorem). An integer n ≥ 2 can be written uniquely
αiin the form n =

Q
p where the pi are the distinct prime divisors of n, and αi ≥ 1.i

For example, 18 has prime factorization 2 · 32 .

Definition 22. If n has only one prime divisor, then it is called a prime power. On the
other hand, if all of the exponents ni are 1, then n is square-free.

Some prime powers are 25 = 52 , 49 = 72 , 27 = 33 . An example of a square-free number is
210 = 2 · 3 · 5 · 7.
Theorem 23 (Part 1). If q is not square-free, then π : Zq → Zq given by π(x) = xi is a
permutation if and only if i = 1.

Proof. Suppose q is not square-free. Then there exists positive n, m ∈ Z where n > 1, such
that q = n2m. Note that 1 < nm < q. Then π(nm) = (nm)i, i ∈ Z where i > 1. Suppose
i > 2. Then

(nm)i = (nm)2 · (nm)i−2 = n 2 · m 2 · (nm)i−2 .

= (n 2 · m) · [m · (nm)i−2] = q[m · (nm)i−2].

11

But q ≡ 0 mod q implies that (nm)i ≡ 0 · [m · (nm)i−2] ≡ 0. Since π(0) ≡ 0 and π(nm) ≡ 0,
it follows that π is not one-to-one. Thus π is not a permutation if i ≥ 2. Hence, π(x) = xi

is a permuation if and only if i = 1.

Definition 24. The number of invertible elements in Zq is denoted by | Z∗ | where q ≥ 2.q

This is equivalent to the Euler-phi function, which is defined as

φ(q) = | {x ∈ Z| gcd(q, x) = 1, 1 ≤ x < q} |.
n1 n1−1 n2 n2−1 nk nk−1 n1 n2 nkFurthermore, φ(q) = (p − p)(p − p) . . . (p − p), where m = p p . . . p .1 1 2 2 k k 1 2 k

Note that if q is square-free, then q = p1p2 . . . pk, where pi are distinct primes. Therefore,

n

φ(q) = (p1 − 1)(p2 − 1) . . . (pk − 1) =
Y

(pi − 1).
i=1

Example 25. Observe that φ(12) =| {1, 5, 7, 11}| = 4.

Theorem 26. If q is square-free, then aφ(q)+1 ≡ a mod q

n1 n2 nkLemma 27. Let q = p p . . . p , where pi are distinct primes and ni are integers. Then1 2 k
there is an isomorphic copy of Fp inside Zq. In particular, if pi divides q, the elements
{0, (q), 2(q), . . . , (pi − 1)(q)} are contained in Zq. These elements form a finite field that

pi pi pi

is isomorphic to Fpi .

Theorem 28 (part 2). Let q be square-free. Then π : Zq → Zq given by π(x) = xi is a
permutation if and only if gcd(i, φ(q)) = 1.

Proof. Begin by considering the contrapositive of the implication that x 7→ xi is a permu-
tation of Zq if gcd(i, φ(q)) = 1. Suppose gcd(i, φ(q)) 6= 1. Suppose i is prime. Since
gcd(i, φ(q)) =6 1, it follows that i | φ(q), which implies i | Qn (pj−1). Thus, there existsj=1
at least one integer k such that 1 ≤ k ≤ n and i | (pk − 1). By Lemma 27, Fpk is embedded
in Zq. Since Fpk is a finite field, it follows that x 7→ xi is a permutation of Fpk if and only if
gcd(i, (pk − 1)) = 1. However, since i| (pk − 1), gcd(i, (pk − 1)) 6= 1. Thus, x 7→ xi is not a
permutation of Fpk and is therefore not a permutation of Zq.

This can be generalized for any i not necessarily prime such that gcd(i, φ(q)) =6 1. For
any positive integer an i there exists an integer m ≥ 1 such that i = mp where p is a prime
and p | φ(q). Therefore, there exists an integer s such that Fps is embedded in Zq, 1 ≤ s ≤ n,
and p | (ps −1). This implies gcd(p, (ps −1)) 6= 1. Consequently, x 7→ xp is not a permutation
of Fps , and is therefore not one-to-one or onto. Hence, at least two elements, w1 and w2, of
Fps map to the same element in Fps . Thus, x 7→ xp is not a bijection of Zq, and therefore
not a permutation. Now consider x 7→ xmp = xi . Let (w1)

p = (w2)
p = v. Then

m(w1)
i = ((w1)

p)m = v
m(w2)

i = ((w2)
p)m = v .

These two elements are mapped to the same element, and therefore x 7→ xi is not a bijection,
and hence not a permutation of Zq.

12

Now, consider the other direction. Let x ∈ Zq. It will be shown that x has a pre-image
under π, thus showing π is onto. Let q = p1p2 . . . pk, where the pj are distinct primes and
suppose gcd(i, φ(q)) = 1. Then there exists a, b ∈ Z, a, b > 0 such that ai − bφ(q) = 1, which

ai 1+bφ(q) b−1 ai b−1 1+bφ(q)implies ai = 1 + bφ(q). Then x = x , which implies that x · x = x · x .
b−1 ai b)1+φ(q) b)1+φ(q) bThis then implies that x x = (x . However, by Theorem 26 (x ≡ x .

ai − x b−1(xConsequently, xb−1x b ≡ 0. This implies that x ai − x) ≡ 0.
Without loss of generality, we can rearrange the primes p1, . . . , pk so that p1, p2, . . . , pα |

x and pα+1, pα+2, . . . , pk - x for some index α. Since xb−1(xai − x) ≡ 0, it follows that
q | xb−1(xai − x). Since each pj is prime, p1p2 · · · pα | x, and so pα+1, pα+2, · · · pk | (xai − x).
However, xai − x ≡ x · (xai−1 − 1). Thus, p1, p2, . . . , pα | x and pα+1, pα+2, · · · pk | (xai−1 − 1).
Consequently, p1, p2, . . . , pα | x · (xai−1 − 1). This implies q | (xai − x). Hence, (xai − x) ≡ 0,

ai ≡ x.which implies x Thus π(xa) = xai ≡ x, and so π is onto. Since Zq has a finite number
of elements, π is also one-to-one, and therefore a bijection. Thus π is a permutation.

4 Monomial Orderings

Constructing permutations from Zq to Zq using finite fields requires the use of a construct
called monomial orders. Let S be a set. A total order on S is a binary relation “<” where
the following hold for all α, β, γ ∈ Zn .

(i) For all α 6= β ∈ Zn, α < β or β < α.

(ii) If α < β and β < γ, then α < γ.

(iii) α 6< α.

A monomial ordering on Zn is a total order “ < ” such that
−→

a. For all α ∈ Nn, α ≥ 0 .

b. α > β =⇒ α + γ > β + γ.

Two types of monomial orders are the Lexicographic and Graded Lexicographic Orders.

4.1 Lexicographic Order
−→→Let − a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ Zn .

−→−→Comparisons under the lexicographic order are given by the following rule: a < b if and −→
b −−→only if the first nonzero entry of a is positive.

4.2 Graded Lexicographic Order
−→→Let − a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ Zn .

−→−→Comparisons under the graded lexicographic order are given by the following rule: a < b if −→ →and only if
Pn ai <

Pn bi or
Pn ai =

Pn bi and the first nonzero entry of b −− ai=1 i=1 i=1 i=1
is positive.

13

−→−→ −→Example 29. Let a = (1, 1, 0), b = (0, 1, 1), and c = (1, 0, 0). For the lexicographic→−→ −→ − − − − −→ → →order, c − b = (1, −1, −1) which implies b < c . Next, a c = (0, 1, 0) means −→−→ − − −→ → →that c < a . One concludes that b < c < a . For the graded lexicographic order,−→ −→→ − →→ →P3
i=1 ai = 2,

P3
i=1 bi = 2,

P3
i=1 ci = 1. Then − c < a and − c < b . Also − a − b = (1, 0, −1),−→ −→−→ − −→ →which indicates b < a . Hence, c < b < a .

Theorem 30. Let M be an n by n invertible matrix with nonnegative, real entries. For
α, β ∈ Nn , define α < β if and only if the leftmost nonzero component of M(β − α) is
positive. Then, this order is a monomial order.

Proof. First one must show that this is a total order.

−→
(i) Suppose M(β − α) = 0 . From this, it follows that

(β − α) = In · (β − α)

M−1 = · M · (β − α)
−→

M−1 = · 0 −→
= 0

−→
Thus, if β =6 α, then M(β − α) =6 0

(ii) Let α < β and β < γ. Then M(γ − α) = M(γ − β + β − α) = M [(γ − β) + (β − α)] =
M(γ − β) + M(β − α). Let i > 0 be the first nonzero component of M(γ − β) and let
j > 0 be the first nonzero component of M(β − α). Hence, one of the following occurs:

(a) M(γ − α) = [0, 0, . . . , 0, i + j, . . .].

(b) M(γ − α) = [0, . . . , i + 0, . . . , x + j, . . .] where x is an element of M(γ − β).

(c) M(γ − α) = [0, . . . , 0, 0 + j, . . . , i + y, . . .] where y is an element of M(β − α).

In any of the above cases, the first nonzero element of M(γ − α) is positive. Therefore,
α < γ.

−→ − −→ →
(iii) Now, M(α − α) = M(0) = 0 . All of the components of 0 are zero, and so α 6< α

Thus, this is a total order.

−→
(a) Let α ∈ Nn . The ith entry of M(α − 0) =

Pn
j=1 (M)ij αj . But since the entries of M

−→
and α are nonnegative,

P
j
n
=1 (M)ij αj ≥ 0. If α 6= 0 , then the first nonzero entry is

−→
positive. Thus α ≥ 0 .

(b) Let α < β. Then the first nonzero entry of M(β − α) is positive. But M(β − α) =
M [(β + γ) − (γ + α)], and so the first nonzero entry of this must also be positive. Thus,
(γ + α) < (β + γ).

Consequently, this order is a monomial order.

14

5 Creating Permutations using Finite Fields

Simulations are used to test the different interleavers. See section 7 on simulations for more
information. To construct the interleavers that are used in the simulations, a computer
program was developed that produces a monomial permutation π : Zpr → Zpr .

π−1 π−1
π1)r π2 π3 2)r 1Zpr −→ (Zp −→ Fpr −→ Fpr −→ (Zp −→ Zpr (1)

The function π1 uses a monomial ordering to order the vectors of (Zp)
r . Recall that a

monomial order is a total order on Nr; since Zp ⊂ N as sets, (ZP)
r inherits the order structure

on Nr . Order the vectors of (ZP)
r from smallest to largest according to this monomial order.

That is, write (ZP)
r = {v0, . . . , vpr −1} where vp ≤ vi+1. Then π1 is defined by π1(i) = vi.

The function π2 : (Zp)
r → Fpr i=0 βiα

iis given by (βr−1, . . . , β0) 7→
Pr−1 .

The function π3 : Fpr → Fpr is given by x 7→ xi .

6 Interleavers

Interleavers are functions that permute data. That is, an interleaver is a bijection π that
maps Zq onto Zq.

Example 31. The following is a permutation and can thus be used as an interleaver:
µ

0 1 2 3 4 5 6
¶

π = .
0 1 4 6 3 2 5

Dispersion, spread, and cyclic decomposition are the properties of interleavers that this
project examines. This project investigates the relationship between these characteristics
and the interleaver’s performance in turbo coding.

6.1 Dispersion

Given a permutation π, one wishes to consider the distance between two values in Zq and the
distance between the images of these values under the given permutation. A high dispersion
indicates a variety of the permutation distances of the elements. In order to compute the
dispersion, the list of differences must first be calculated.

Definition 32. Given a permutation π of Zq, the list of differences of π is defined to be the
set

D(π) = {(j − i, π(j) − π(i)) | 0 ≤ i < j < q}.
Example 33. To list out the set of differences one starts by comparing the difference between
elements in Zq and the difference of their permutations. Looking at the first two entries in
Zq, 0 and 1, one notices they have a difference of one, and that the difference between their
permutations is 1. Thus, the first element of the set is (1, 1). Similarly, between 1 and 2,

15

⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪

the difference between them is one while the difference between their permutations is three.
Then the second element in the set of differences is (1, 3). Continuing in this manner, the
permutation in Example 31 has the following list of differences:

⎧
(1, 1) (1, 3) (1, 2) (1, -3) (1, -1) (1, 3)

⎫

(2, 4)⎪
(3, 6)

⎨
D(π) =

(4, 3)

(2, 5)
(3, 2)
(4, 1)

(2, -1)
(3, -2)
(4, 1)

(2, -4)
(3, -1)

(2, 2) ⎪⎬

(5, 2)⎪
(6, 5)

⎩
(5, 4) ⎪⎭

Because D(π) is a set, and (1, 3) and (4, 1) are repeated, there are 19 elements total. In
other words, |D(π)| = 19.

Definition 34. Given a permutation π, the dispersion of π is given by

|D(π)| 2 · |D(π)|
= .¡

2
q
¢

q · (q − 1)

In example 33, q = 7. Therefore, the dispersion is

(2 · 19) 19
= ≈ 0.905

(7 · 6) 21

.

Theorem 35. For any permutation π, the dispersion is at most 1. Moreover, there exists a
permutation with dispersion exactly 1 (see [HeSt]).

The maximum dispersion is 1, and so the closer this value is to 1, the more disperse the
permutation.

6.2 Spread

Given a permutation π, one wishes to consider the distance between two values in Zq and
the distance between the images of these values under the given permutation. Loosely
speaking, spread measures how these two distances compare. If the images typically have
larger distances between them, then the spread is larger. Spread is the maximum value of
s such that

|i − j| < s implies |π(i) − π(j)| ≥ s, for 1 ≤ s ≤ q. [♥]

Suppose s = 1. By looking at the list of differences, it is obvious that there are no differences
where the first term is less than 1. Therefore, there does not exist an i 6= j such that |i−j| < 1
is true. Thus, the antecedent of ♥ itself is always false. Consequently, the implication is
always true. Thus, the minimum spread is 1. Once a value for s fails to satisfy ♥, then
there is no need to check for higher values of s. This is because the ordered pair of the list
of differences that failed for s will also fail for s + 1. The best way to understand spread is
to look at an example.

16

Example 36. For the example 31, let s = 2. Considering the element (1, 1) of the list of
differences, it is evident that this fails the implication ♥. This is because 1 < 2, yet 1 � 2.
Therefore the maximum value of s is 1. This is the spread.

Theorem 37. For any permutation π, the spread is at most
√

2
q

6.3 Cyclic Decomposition

A permutation can be divided into cycles. A cycle is an ordered list of elements x0, x1, . . . , xn

such that

π(x0) = x1

π(x1) = x2

. . .

π(xn−1) = xn

π(xn) = x0.

Thus the elements make a cycle: x0 → x1 → x2 → . . . → xn → x0. This cycle is written
as (x0, x1, . . . , xn). Since it has (n + 1) elements, it is called a (n + 1)-cycle.

Example 38. Consider the permutation
µ

0 1 2 3 4 5 6
¶

π = .
0 1 4 6 3 2 5

Notice 0 → 0 which implies π contains the cycle (0). Next, 1 → 1 which implies π contains
(1). Now, 2 → 4 → 3 → 6 → 5 → 2 which implies π contains the cycle (2 4 3 6 5). Therefore,
the cyclic decomposition of π is

(0)(1)(2 4 3 6 5),

with two 1-cycles and one 5-cycle.

7 Simulations

In order to test the performance of different interleavers, the permutations of the data are
sent through turbo code simulations on Matlab. This project utilized Yufei Wu’s turbo
simulation code (see [Wu]). A few settings must be made before the simulator can be run.

A frame is the block length of the interleaver. For this project the number of frames in
error was sixty. This means a series of codeword’s (frames) were sent over a noisy channel
until a total of sixty frames could not be decoded properly.

After a code word has been sent across the noisy channel, the received word is sent
through a decoder. Within this particular decoder, there are two separate decoding entities.
Each one takes half of the bits of the received word. Based on the information they have,
they attempt to reconstruct the original code word. Each swaps its reconstruction with the
other decoder and then proceeds to make another attempt at producing the original code
word by incorporating the other decoder’s suggestion into its decision. The information is

17

then swapped again, and the decoders repeat the process. The number of times this process
is repeated is the number of iterations. For this project twenty iterations were used.

The signal to noise ratio (SNR) is the ratio of the signal strength to the strength of
the noise. Since corruption of bits is a problem, the SNR is varied to test to see how well
the decoder can determine the original message over a range of noise levels. The SNR levels
used in this project were 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0.

The Matlab simulation returns two values, the Bit Error Rate (BER) and the Frame
Error Rate (FER). A codeword consists of components known as bits. The BER is
the ratio of the number of corrupted bits that cannot be corrected to the total number of
bits transmitted. The FER is the ratio of the number of corrupted frames that cannot be
corrected to the total number of frames sent.

8 Results

By running interleavers of various lengths in simulations, several topics were studied. Noting
that monomial permutations that contain the elements 0 and 1 will always have a spread
of 1, a goal of the project became to find and study interleavers with higher spreads. Con-
sequently, the performance of interleavers with and without the 0 element were compared.
Using the interleavers without the 0 element, several comparisons were made. The project
examined fields generated from various irreducible polynomials and ordered with different
monomial orderings. In addition, the interleaver properties of spread, dispersion, and cyclic
decomposition were studied. Finally, interleavers that were constructed by using finite fields
were compared to both randomly constructed interleavers and interleavers that were created
using a monomial permutation of Zq.

8.1 Removing Zero

When constructing the permutations from Fq to Fq of the form x 7→ xi, π(0) is always 0
and π(1) is always 1. Consequently, (1, 1) is always an element in the list of differences.
This forces the spread to be 1 for all permutation monomials of this form. In order to
examine the effects of the interleavers’ spread, the permutations were restricted to the set of
nonzero elements of Fq. The following graphs and table show that removing zero from the
permutation did not significantly affect the dispersion or error rates.

18

In Figure 6, the dispersions and spreads were recorded for F128, with and without the
zero element. Notice that the ratios for dispersion are close to 1.

Power Without Zero With Zero

Ratio of
Without
Zero to

With Zero Without ZeroWith Zero
1 0.015748032 0.015625 1.007874 1 1
2 0.460692413 0.456447 1.009301 1 1
3 0.8223972 0.822589 0.999767 2 1
4 0.492938383 0.489665 1.006684 1 1
5 0.817647794 0.817913 0.999675 2 1
6 0.817897763 0.817298 1.000734 1 1
7 0.807149106 0.807087 1.000077 1 1
8 0.536307962 0.532726 1.006723 1 1
9 0.825271841 0.825787 0.999376 1 1
10 0.8183977 0.81533 1.003763 2 1
11 0.825021872 0.826156 0.998627 1 1
12 0.820897388 0.819882 1.001239 1 1
13 0.821272341 0.821973 0.999147 1 1
14 0.816272966 0.815453 1.001006 1 1
15 0.820272466 0.820743 0.999427 1 1
16 0.536307962 0.532726 1.006723 1 1
17 0.820272466 0.820743 0.999427 1 1
18 0.82352206 0.821973 1.001884 1 1
19 0.803149606 0.803273 0.999847 1 1
20 0.82752156 0.827141 1.00046 1 1
… … … … … …

125 0.815148107 0.814222 1.001137 1 1
126 0.805774278 0.806718 0.998831 1 1

Averages 0.795111921 0.794699 1.007126 1.15873 1

Dispersion Spread

Figure 6: Dispersion and Spread for Z128

19

Figure 7 compares the average BER and average FER for the monomial permutations of
with and without the zero element.

0 0.5 1 1.5 2

10
−2

10
−1

SNR

F
E

R

Average BER for 128 with and without zero for h(x)=x7+x6+x4+x+1

with zero
without zero

0 0.5 1 1.5 2
10

−2

10
−1

10
0

SNR

F
E

R

Average FER for 128 with and without zero for h(x)=x7+x6+x4+x+1

with zero
without zero

Z128,

Figure 7: Average BER and FER for q = 128

The difference between error rates is insignificant. Consequently, the permutations with-
out the 0 element will behave very similarly to the permutations with 0.

8.2 Dispersion

In order to examine how different dispersions affect the performance of the interleavers, F64

was used. For the irreducible polynomial h(x) = x6 + x5 + x2 + x + 1, the signal to noise
ratio (SNR) for values of 0, 1.0, and 2.0 were graphed.

20

SNR 0, Figures 8 and 9 represent BER versus Dispesion and FER versus Dispersion.
bit and frame error rates are about the same for all dispersions.

For
Both the

Figure 8: BER with SNR 0

Figure 9: FER wth SNR 0

21

SNR 1.0, Figures 10 and 11 below represent BER versus Dispesion and FER versus
Dispersion. The error rates for this SNR value are slightly lower as the dispersion increases.

For

Figure 10: BER wth SNR 1.0

Figure 11: FER wth SNR 1.0

22

SNR 2.0 in general, the error rates decrease as the dispersion increases. Figures 12
represent BER versus Dispesion and FER versus Dispersion for SNR 2.0.

Figure 12: BER wth SNR 2.0

For
and 13

Figure 13: FER wth SNR 2.0

Consequently, it appears that as the SNR increases, higher dispersion rates will yield a
better performance.

23

polynomial h(x) x + x + x + x + 1. Figures 14 and 15 show the average error rates for
spread equal to 1 and for spread equal to 2 across various SNRs.

Figure 14: Average BER for Spread Comparison

8.3 Spread

For analyzing how spread affects the performance of interleavers, F32 was used with the
= 5 4 2

Figure 15: Average FER for Spread Comparison

For both of the bit and frame error rates, when the spread is 2 the error rates are lower.
This suggests that interleavers with higher spread will perform better.

24

Cyclic Decomposition

could be drawn from the data obtained in this project about relating the
cyclic decomposition to the performance of the interleaver. In the data obtained from the

interleavers of the same cyclic decomposition did not have the same behavior.
by examining the cyclic decomposition of fields with different monomial orderings
multiplication is defined by different irreducible polynomials, an interesting result

chart 16 shows the cyclic decomposition for all permutation monomials for F32. This
chart for the various fields of F32, independent of the irreducible polynomial and

ordering used. In this chart, 1-c, 2-c,. . ., 30-c stand for the length of the cycles.
in the first line for x 7→ x, there are 31 one-cycles. In the second line for
is 1 one-cycle and 6 five-cycles.

F32 1-c 2-c 3-c 5-c 6-c 10-c 15-c 30-c

x-> x 31 0 0 0 0 0 0 0
x-> x^2 1 0 0 6 0 0 0 0
x-> x^3 1 0 0 0 0 0 0 1
x-> x^4 1 0 0 6 0 0 0 0
x-> x^5 1 0 10 0 0 0 0 0
x-> x^6 1 0 0 0 5 0 0 0
x-> x^7 1 0 0 0 0 0 2 0
x-> x^8 1 0 0 6 0 0 0 0
x-> x^9 1 0 0 0 0 0 2 0
x-> x^10 1 0 0 0 0 0 2 0
x-> x^11 1 0 0 0 0 0 0 1
x-> x^12 1 0 0 0 0 0 0 1
x-> x^13 1 0 0 0 0 0 0 1
x-> x^14 1 0 0 0 0 0 2 0
x-> x^15 1 0 0 0 0 3 0 0
x-> x^16 1 0 0 6 0 0 0 0
x-> x^17 1 0 0 0 0 0 0 1
x-> x^18 1 0 0 0 0 0 2 0
x-> x^19 1 0 0 0 0 0 2 0
x-> x^20 1 0 0 0 0 0 2 0
x-> x^21 1 0 0 0 0 0 0 1
x-> x^22 1 0 0 0 0 0 0 1
x-> x^23 1 0 0 0 0 3 0 0
x-> x^24 1 0 0 0 0 0 0 1
x-> x^25 1 0 10 0 0 0 0 0
x-> x^26 1 0 0 0 5 0 0 0
x-> x^27 1 0 0 0 0 3 0 0
x-> x^28 1 0 0 0 0 0 2 0
x-> x^29 1 0 0 0 0 3 0 0
x-> x^30 1 15 0 0 0 0 0 0

Cyclic Decomposition

8.4

No conclusion

simulations,
However,
and whose
emerged.

The
is the same
monomial
For example,
x 7→ x2 , there

Figure 16: Cyclic Decomposition for F32

25

It is interesting to note that each monomial permutation and its inverse had the same
spread, dispersion, and cyclic decomposition.

Theorem 39. If σ1, σ2 are permutations of Zq then σ1 and its conjugate σ2
−1σ1σ2 have the

same cyclic decomposition.

Recall the process of generating the permutation π : Zpr → Zpr ,

R−1 M−1

Zpr −→ (Zp)
r −→ Fpr −→ Fpr −→ (Zp)

r −→ Zpr ,
M R fi

i)rwhere fi(x) = x , M is a monomial ordering from Zpr → (Zp and M−1 is its inverse
mapping from (Zp)

r → Zpr . Thus, the permutation π is

π = M−1 R−1fiR M.

Theorem 40. If π1, π2 are permutations of Zpr → Zpr with monomial orders of M1 and M2,
respectively, then they have the same cyclic decomposition.

Proof. Let π1 = M1
−1 R−1fiR M1 and π2 = M2

−1 R−1fiR M2. Then

π2 = (M2
−1M1)π1(M1

−1M2)

= (M1
−1M2)

−1 π1(M1
−1M2).

Since M1
−1M2 is the mapping from

M −1
M2 1Zpr −→ (Zp)

r −→ Zpr ,

M1
−1M2 and (M1

−1M2)
−1 are permutations of Zpr . Therefore, π2 is the conjugate of π1, and

so by Theorem 39 it follows that they have the same cyclic decomposition.

Similarly, the cyclic decomposition is the same across irreducible polynomials used to
generate a finite field.

Theorem 41. Different irreducible polynomials that generate Fq produce the same cyclic
decomposition.

Proof. To get a permutation of Zpr , the following composition of functions is used:

R−1 M−1

π : Zpr −→ (Zp)
r −→ Fpr −→ Fpr −→ (Zp)

r −→ Zpr .
M R fi

This means π = M−1R−1fiRM where fi(x) = xi . Every field Fpr has a primitive polynomial.
Let h(α) be the primitive polynomial for Fpr , i.e. Fpr = {0, 1, α, α2 , . . . , αpr −2}. Let gi(x) =
xi , gi : Fpr −→Fpr . Take an irreducible polynomial of degree r, hj (x). By Theorem 14, there
exists an isomorphism zj : Fp[x]/hhj (x)i−→Fp[x]/hh(x)i. Since Fp[x]/hhj (x)i = Fpr and

fiFp[x]/hh(x)i = Fpr , it follows that Fpr −→ Fpr can be replaced by

−1 zj zjgiFpr −→ Fpr −→ Fpr −→ Fpr ,

26

−1 −1i.e., fi = zj gizj . Hence, π = M−1R−1zj gizj RM. Consider two irreducible polynomials of
degree r, h1(x) and h2(x). Then there exists z1 and z2 such that

M−1R−1 −1π1 = z1 giz1RM

M−1R−1 −1π2 = z2 giz2RM.

But

(M−1R−1 −1 −1π1 = z2 z1RM)π2(M
−1R−1 z1 z2RM)

(M−1R−1 −1 −1 = z2 z1RM)π2(M
−1R−1 z2 z1RM)−1 .

Hence, π1 and π2 are conjugates and therefore have the same cyclic decomposition.

8.5 Lexicographic Versus Graded Lexicographic Ordering

In this project two types of monomial orderings were used, lexicographic and graded lexico-
graphic. Figures 17 and 18 shows the average BER and FER for

6 5 2F64 = F2[x]/hh(x) = x + x + x + x + 1i.

Figure 17: Average BER for Monomial Orderings

27

Figure 18: Average FER for Monomial Orderings

According to these graphs, there is not much of a difference in performance when com-
the two monomial orderings. This knowledge is beneficial for programming and

simulations since the graded lexicographic ordering is costly and time consuming, whereas
lexicographic ordering is inexpensive and quick.

Different Irreducible Polynomials

Different irreducible polynomials were used to generate permutations of the form x 7→ xi , as
in equation 1. Figures 19 and 20 show the average BER and FER for six different irreducible
polynomials.

0 0.5 1 1.5 2

10
−2

10
−1

SNR

B
E

R

Average BER for different irreducible polynomials for F 64

h(x) =x6+x4+x3+x+1

h(x) = x6+x+1

h(x) = x6+x5+x4+x+1

h(x) = x6+x5+1

h(x) = x6+x5+x2+x+1

h(x) = x6+x5+x3+x2+1

8.6

paring

the

Figure 19: Average BER for Different Irreducible Polynomials

28

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

10
−1

SNR

F
E

R

Average FER for different irreducible polynomials for F 64

h(x) =x6+x4+x3+x+1

h(x) = x6+x+1

h(x) = x6+x5+x4+x+1

h(x) = x6+x5+1

h(x) = x6+x5+x2+x+1

h(x) = x6+x5+x3+x2+1

Figure 20: Average FER for Different Irreducible Polynomials

All six polynomials have similar behavior. Although one polynomial, h(x) x6 + x5 +
x + 1, has slightly lower error rates, the difference is insignificant. This suggests that

using different irreducible polynomials produces no significan difference in performance.

Comparing Zq versus Fq Interleavers

All monomial permutations x 7→ xi for Zq are known due to Theorems 23 and 28. Therefore,
permutations of Zq that do not use finite fields can be compared to permutations of Zq that

use finite fields. Figures 21 and 22 show the average BER and FER for q 256.

0 0.5 1 1.5 2

10
−3

10
−2

10
−1

SNR

B
E

R

Zq versus Fq for q=256 BER Averages

Fq
Zq

=
x4 +

8.7

do =

Figure 21: Average BER

29

0 0.5 1 1.5 2

10
−1

10
0

SNR

F
E

R

Zq versus Fq for q=256 FER Averages

Fq
Zq

the dispersion of Z128 to F128.

Figure 22: Average FER

In the BER graph, Fq performs slightly better as the SNR increases. However, in the FER
graph, Fq performs much better as SNR increases.

Figure 23 compares

Figure 23: Dispersion Comparison

Notice that the most all of the dispersions for Z128 are about 0.45, whereas almost all of
the dispersions for F128 are about 0.8.

8.8 Comparing Randomly Constructed Interleavers versus those
made with Fq

Algebraically constructing the permutations for Zq and Fq using monomial permutations is
systematic. Therefore, there is a need to compare these permutations to completely random
permutations. Below are BER and FER graphs for q =32, 64, 128, and 256, where the Fq

graph is one particular permutation.

30

For q 32, the random permutation had higher frame error rates. As for the bit error
rates, the lower SNR values produced lower error rates for the random permutation. Higher

values yielded higher error rates for the random permutation.

0 0.5 1 1.5 2

10
−2

10
−1

SNR

B
E

R

Fq versus a Random Permutation, q=32, BER

Fq, i=30
h(x)=x5+x3+x2+x+1

Random

0 0.5 1 1.5 2

10
−1

SNR

F
E

R

Fq versus a Random Permutation, q=32, FER

Fq, i=30
h(x) = x5+x3+x2+x+1

Random

=

SNR

Figure 24: BER and FER for q = 32

31

For q 64 the random permutation had better frame error rates. However, for the bit
error rates, neither permutation had an advantage over the other.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
−2

10
−1

SNR

B
E

R

Fq versus a Random Permutation, q=64, BER

Fq, i=62
h(x) = x6+x5+x3+x2+1

Random

0 0.5 1 1.5 2

10
−1

SNR

F
E

R

Fq versus a Random Permutation, q=64, FER

Fq, i=62
h(x) = x6+x5+x3+x2+1

Random

=

Figure 25: BER and FER for q = 64

32

For q 128, both permutations behaved in a similar manner. Consequently, neither
permutation outperformed the other.

0 0.5 1 1.5 2

10
−2

10
−1

SNR

B
E

R

Fq versus a Random Permutation, q=128, BER

Fq, i=126
h(x)=x7+x6+x4+x+1

Random

0 0.5 1 1.5 2

10
−1

10
0

SNR

F
E

R

Fq versus a Random Permutation, q=128, FER

Fq, i=126
h(x)=x7+x6+x4+x+1

data2

=

Figure 26: BER and FER for q = 128

33

For q 256, the differences in both the bit error rates and frame error rates are too small
be of consequence.

0 0.5 1 1.5 2

10
−3

10
−2

10
−1

SNR

B
E

R

Fq versus a Random Permutation, q=256, BER

Fq, i=254
h(x)=x8+x6+x5+x2+1

Random

0 0.5 1 1.5 2
10

−2

10
−1

10
0

SNR

F
E

R

Fq versus a Random Permutation, q=256, FER

Fq, i=254
h(x)=x8+x6+x5+x2+1

Random

=
to

Figure 27: BER and FER for q = 256

Overall, it appears that as q increases, the random permutations perform very similarly
to Fq in simulations. This suggests that using interleavers that are constructed using finite
fields perform as well as interleavers that are constructed randomly.

34

9 Conclusion

This project focused on the effects of various interleavers in turbo codes. These interleavers
were constructed through the use of finite fields. The main reason for constructing inter-
leavers in this systematic way instead of randomly is to minimize the storage use. Through
simulations their performance was measured through Bit Error Rates and Frame Error Rates
and then compared to random interleavers and interleavers of Zq whose construction did not
include the use finite fields. Interleavers using finite fields performed better than those us-
ing Zq directly, however, as q increased, those using finite fields performed very similarly
to a random interleaver. Interleavers with higher dispersion generally performed better as
the SNR increases. Also, interleavers with higher spread had lower error rates, whereas no
conclusions could be drawn about cyclic decomposition. There was no significant difference
in interleavers that used different irreducible polynomials or monomial ordering.

10 Work to be Considered for the Future

• Since there were no conclusions that could be drawn from the data on cyclic decom-
position from this project, further studies could be done on this property.

• Blocks of greater length should be analyzed.

• Do fields generated by different irreducible polynomials provide the same permutations
besides the identity?

• If there are two given monomial orders, do they have either all permutations the same
or all different, excluding the identity?

• Can two permutations generated by different irreducible polynomials and monomial
orders be the same, excluding the identity.

• How do fields generated by primitive polynomials versus non-primitive polynomials
perform?

35

References

[Co] Cook, John., Finding Irreducible Polynomials and Finite Field Procedures.
http://www-rohan.sdsu.edu/∼mosolliv/courses/coding02/codsch.html

[HeSt] heegard Heegard, C., Stephen, B. (1999). Turbo Coding. Kluwer Academic Publish-
ing.

[LuPe] Luis, Y., B., Perez, L., O. (2005). Permutations of Zq Constructed Using Several
Monomial Orderings. University of Puerto Rico, 1–8.

[Wu] Wu, Yufei., Turbo Code Simulator., Nov 1998., MPRG lab, Virginia Tech.
http://www.ee.vt.edu/∼yufei

36

http://www.ee.vt.edu/�yufei
http://www-rohan.sdsu.edu/�mosolliv/courses/coding02/codsch.html

A Appendix

A.1 A Note on Maple Programs for this Project

The Maple procedures written for this project require the following line, which loads four
different packages:

with(ListTools,LinearAlgebra,PolynomialTools,linalg):

A.2 Program for Construction of Permutations

Before getting to the main program that constructs the permutations, there are a couple of
preliminary programs that must be run.
The first program, “lc”, takes in an n × n matrix and two vectors of length n. The matrix
is a monomial ordering matrix. The output tells which vector is larger according to this
ordering.

lc:=proc(u,v,w) local t,f,nn,ii,z;
t:= v-w;
nn:= op(1,u.t);

f:=(u.t);
for ii from 1 to nn do

if (f[ii]>0) then
z:=1;
break;

elif
(f[ii]=0)then
z:=0
elif (f[ii]< 0) then

z:=-1;
break;

end if;
end do;

z; end proc:

The“ben” program takes in a list of elements, a vector that contains the coefficients of
a polynomial, and an integer. This program maps each element according to the received
polynomial vector modulo the inputed integer.

ben:= proc(a,coeffvector,g) local outputvector,sizea,sizec,j,d,poly;
sizec:=op(1,coeffvector):
poly:=0:
for d from 1 to sizec do

poly:=poly+coeffvector[d]*x^(sizec-d);
end do;
sizea:=op(1,a);

37

(storevector[aa+1]))],Vector[row]);

[Transpose](storevector[(ordervector2[m])]));

ordervector2[m..op(1,ordervector2)]],Vector);

outputvector:=Vector[row](sizea);
for j from 1 to sizea do

outputvector[j]:=expand((eval(poly, x=a[j]))) mod g:
end do;
outputvector;

end proc:

This is the main program that constructs the permutations. The input is p, n where
Fq = Fpn . It takes in a polynomial coefficient vector, a monomial ordering matrix, and an
irreducible polynomial of degree n. It outputs a permutation of Zq according to equation 1.

permutations:=proc(p,n,poly,matrix,irreduciblepoly)
local q,ordervector,ordervector2,j,flag,m,qq,storevector,aa,y,

xvector,yy,powers,temporaryvector,yvector,yvector2,kk,b,
vectormatrix,jj,k,r,searchvector,rr,flagg,storevector2,u,w;

q := p^n:
storevector:=Vector(p^n):
storevector[1]:=Vector[row](n):
for aa from 1 to q-1 do

storevector[aa+1]:=convert(aa,base,p):
if nops(storevector[aa+1])<n then

storevector[aa+1]:=convert([storevector[aa+1],Vector[row](n-nops
end if;

storevector[aa+1]:=convert(ListTools[Reverse]
(convert(storevector[aa+1],list)),Vector[row]):

end do:
ordervector:=Vector(q,q);
ordervector[1]:=0;
ordervector2:=[1];
for j from 2 to q do
flag:=0;
if ordervector[j]=q then

m:=1:
while (m<(op(1,ordervector2)+1) and flag=0) do

qq:=lc(matrix,LinearAlgebra[Transpose](storevector[j]),LinearAlgebra
if qq=-1 then

if m=1 then
ordervector2:=convert([j,ordervector2],Vector);
flag:=1;

else
ordervector2:=convert([ordervector2[1..m-1],j,

flag:=1;
end if;

elif qq=1 then
if m=op(1,ordervector2) then

38

ordervector2:=convert([ordervector2,j],Vector);
flag:=1;

else
m:=m+1;

end if;
elif qq=0 then

print("error");
end if;

end do;
end if;
end do:
for y from 1 to q do
ordervector[ordervector2[y]]:=y-1:
end do:
storevector2:=Vector(q);
for u from 1 to q do
storevector2[ordervector[u]+1]:=storevector[u];
end do;
for w from 0 to q-1 do

ordervector[w+1]:=w;
end do;
xvector:=Vector(q);
for yy from 1 to q do
temporaryvector:=0;

for powers from 1 to n do
temporaryvector:=temporaryvector

+ storevector2[yy][powers]*x^(n-powers);
end do;

xvector[yy]:=temporaryvector;
end do;
xvector:=LinearAlgebra[Transpose](xvector);
yvector:=ben(xvector,poly,p);
alias(alpha=RootOf(irreduciblepoly));
yvector2:=subs(x=RootOf(irreduciblepoly),yvector);
for kk from 1 to q do

yvector2[kk]:=Normal(yvector2[kk]) mod p;
end do;
yvector2;
vectormatrix:=Vector(q);
for jj from 1 by 1 to q do
b:=ListTools[Reverse](CoefficientList(RootOf(irreduciblepoly)^n

+yvector2[jj],RootOf(irreduciblepoly))):
vectormatrix[jj]:=convert(b[2..n+1],Vector[row]):
end do:
vectormatrix:=convert(vectormatrix,list);

39

end if;

storevector2:=convert(storevector2,list);
for k to q do

storevector2[k] := convert(storevector2[k], list);
vectormatrix[k] := convert(vectormatrix[k], list);

end do:
searchvector:=Vector[row](q);
for r from 1 to q do
flagg:=0;
for rr from 1 to q while flagg=0 do

if (vectormatrix[r]=storevector2[rr]) then
searchvector[r]:=ordervector[rr];
flagg:=1;

end if;
end do;
end do:
searchvector;

end proc:

In the program “findpolynomial,” the input is p, n where Fq = Fpn . The output is a list
of irreducible polynomials of degree n.

findpolynomial:=proc(a,b) local c,SF,PrimFactors,FactorIndx;
c:=a^b;
SF := Factors(x^(c-1) - 1) mod a:
PrimFactors:=[];
for FactorIndx from 1 to nops(SF[2]) do

if (degree(SF[2,FactorIndx,1])= b) then
if (Primitive(SF[2,FactorIndx,1]) mod a) then

PrimFactors := [op(PrimFactors),SF[2,FactorIndx,1]];
end if;

end do;
PrimFactors; end proc:

B Program for Dispersion

This program takes as input a permutation as a list and computes its dispersion.

dispersion:=proc(v)::Vector; local
x,w,sizev,factorv,y,z,i,j,k,a,b,c;

sizev:=nops(v);
w:=[v[2..sizev],v[1]];
x:=convert(w,Vector);
y:=sum(q,q=1..sizev-1);
z:=Vector(y);
k:=0;

40

for i from 1 by 1 to sizev-1 do
for j from i+1 by 1 to sizev do

k:=k+1;
z[k]:=[i,x[j]-x[j-i]];

end do;
end do;
a:=MakeUnique(convert(z,listlist));
b:=nops(a);
c:=2*b/(sizev*(sizev-1));

end proc:

C Program for Spread

This program takes as input a permutation in the form of a list and computes its spread.

spreading:=proc(v) local x,w,sizev,factorv,y,z,i,j,k,m,n,
differences,marker,s,spread;

sizev:=nops(v);
w:=[v[2..sizev],v[1]];
x:=convert(w,Vector);
y:=sum(q,q=1..sizev-1);
z:=Vector(y);
k:=0;
for i from 1 by 1 to sizev-1 do

for j from i+1 by 1 to sizev do
k:=k+1;
z[k]:=[i,abs(x[j]-x[j-i])];

end do;
end do;
differences:=(convert(z,listlist));
n:=nops(differences);
marker:=0;
s:=2;
while marker=0 do

for m from 1 to n do
if differences[m,1]<s then

if differences[m,2]<s then
marker:=1;
spread:=s-1;

end if;
end if;

end do;
if marker=0 then

41

if s<(n-1) then
s:=s+1;

else
spread:=n-1;
marker:=1;

end if;
end if;

end do;
spread;

end proc:

D Program for Cyclic Decomposition

This program takes as input a permutation in the form of a list. It initially computes the
cyclic decomposition, and then it proceeds to determine how many cycles there are of each
length.

decompose:=proc(perm) local
len,reflist,seen,begin,idx,j,k,cycle,final,b,c,f,

u,w,uu,ww,sizestore,flag;
len:=nops(perm);
reflist:=convert([seq(i,i=1..len)],’array’);
seen:=convert([seq(0,i=1..len)],’array’);
seen[1]:=1;
idx:=1;
begin:=1;
cycle:=[1];
final:=[];
for j from 1 by 1 to len do

idx:=perm[idx];
if (begin=idx) then

final:=[FlattenOnce(final),cycle];
for k from 1 by 1 to len do

if(seen[k]=0) then
idx:=k;

end if;
end do;
begin:=idx;
cycle:=[idx];
seen[idx]:=1;

else
cycle:=[Flatten([cycle,idx])];
seen[idx]:=1;

end if;

42

end do;
final:=FlattenOnce(final);
b:=nops(final);
c:=[];
for f from 1 to b do

c:=[Flatten([c,nops(final[f])])];
end do;

u:=nops(c[1]); sizestore:=[[c[1,1],1]]; for w from 2 to u do
uu:=nops(sizestore);
flag:=0;
for ww from 1 to uu while flag=0 do

if c[1,w]=sizestore[ww,1] then
sizestore[ww,2]:=sizestore[ww,2]+1;
flag:=1;

end if;
end do;
if flag=0 then

sizestore:=[op(sizestore),[c[1,w],1]];
end if;

end do; sizestore; end proc:

43

