
Algebraic Interleavers in Turbo Codes

California State Polytechnic University, Pomona

and

Loyola Marymount University

Department of Mathematics Technical Report

�Jason Dollo� , Zackary Kenz, † Jacquelyn Rische‡ , Danielle Ashley Rogers,§

Laura Smith¶, Edward Mosteigk

Applied Mathematical Sciences Summer Institute
Department of Mathematics & Statistics

California State Polytechnic University Pomona
3801 W. Temple Ave.
Pomona, CA 91768

August 2006

�Southwestern University
†Concordia College-Moorhead
‡Whittier College
§University of Michigan
¶Western Washington University
kLoyola Marymount University, Los Angeles

1

Abstract

Coding theory is the branch of mathematics and electrical engineering that involves
transmitting data across noisy channels via clever means. While the transmission can
be very error-prone, there are various methods used to send the data so that a large
number of the errors can be corrected. Applications in communications, the design of
computer memory systems, and the creation of compact discs have demonstrated the
value of error-correcting codes. Our research examines a specifc class of codes called
turbo codes. These high performance error-correcting codes can be used when seek-
ing to achieve maximal information transfer over a limited-bandwidth communication
channel in the presence of data-corrupting noise. In order to gain a deeper understand-
ing of turbo codes, we study a particular component, interleavers. An interleaver is a
device that scrambles the sequence of data bits before transmission. In order to study
this component and how it a� ects the performance of turbo codes, we examine two of
its properties: spread and dispersion. Using computer simulations, we will not only
study how these properties a� ect the error rates, but also work toward creating new
properties that will aid in examining the e �ectiveness of interleavers.

2

1 Introduction

1.1 What is Coding Theory?

Coding theory is the study of the transmission of data across a noisy channel, with the
ultimate goal of successfully recovering from an error-ridden received message back to its
original, error-free form. Since the channel is noisy, error-correcting measures must be taken
in order to preserve the original message. A part of coding theory, the area we are studying,
is dedicated to fnding ways to predetermine which coding schemes will result in the fewest
uncorrectable errors in the received message.

It is important to note that coding theory is not cryptography. Cryptography seeks to
hide the contents of a transmitted message; coding theory seeks to successfully transmit a
message without irreversible errors occurring. Though these can be used together (i.e., a
message can be encoded using cryptography and sent across a channel using coding theory),
our focus is on studying the best methods to transmit data so that it is resistant to corruption.

1.2 History/Applications

Coding theory has been used in various applications throughout the past ffty years. Reed-
Solomon codes were used to successfully transmit pictures of Jupiter and Saturn back to
Earth in the 1970s. Coding theory is also used in modern applications like CDs, DVDs, and
cell phones to ensure that the information in each application reaches the end-user nearly
free of errors.

1.3 Our Direction

We are examining the inner components of a code to determine which characteristics (such
as the code’s block length or the interleaver used) directly a�ect the performance of the code.
Some building blocks of the interleaver include a fnite feld permutation (which is represented
by a polynomial) and any monomial ordering used in its creation. These elements and their
relation to the project will be discussed later. It is believed that changing these factors may
result in improved error-reducing ability of a code; our project looks at various simulations
where these factors are changed and draws conclusions from the data. Since it is not well
understood why carefully constructed turbo codes tend to have excellent error-correcting
abilities, a study of the properties of turbo codes may shed some light into the mechanics of
the codes.

2 Turbo Codes

In our study of coding theory, we will focus on turbo codes in particular. These are a class
of codes that are currently used in deep-space and satellite communications. Turbo codes
use convolutional codes, interleavers and redundancy to encode messages. Figure 1 consists
of a diagram depicting the type of turbo code that we will be using.

The process message transmission begins with creating three copies of the original mes-
sage. One copy of the message (the upper track in the fgure) is sent through unchanged,

3

Figure 1: Diagram of a Turbo Code

and is denoted m = (m1, m2, ...). A second copy (middle track of fgure) is sent through a
convolutional code and denoted u = (u1, u2, ...). A third copy (bottom track of fgure) is sent
through an interleaver and then through a convolutional code and denoted v = (v1, v2, ...).
The second and third messages are then combined together, taking the odd bits from one
and the even bits from the other, to form n = (u1, v2, u3, v4, ...) = (n1, n2, n3, n4, ...). This
vector is then combined with m as follows: c = (m1, n1, m2, n2, ...). The rate at which the
message is sent is 1

2 , which means the encoded message is twice as long as the original. Lower
rate codes are more e�ective at correcting errors, but transmission takes longer. After the
fnal encoded message is computed, it is transmitted across across a (noisy) channel. Once
received, the intended recipient attempts to decode the message.

2.1 Decoding the Message

To decode the received message, it is frst split into two halves according to the odd and
even bits. These two halves are sent to distinct decoders. These two decoders use iterative
decoding and belief propagation. During the transmission, the message might have become
corrupted with errors due to noise. The two decoders each look at the message and compare
it back and forth for a set number of iterations. When one decoder fnds an error it tries to
fx it, and then gives the “fxed” message to the other decoder. In this process, the decoders
use belief propagation to compare the message and fnd (and hopefully fx) any errors.

2.2 Convolutional Codes

Convolutional codes use shift registers to encode the message that is being sent. Figure 2 is
an example of a shift register sequence. Before the message is sent through the convolutional
code, the shift registers begin with 0 inside. As the message is encoded, the bits enter one
at a time and follow along the paths. Whenever a bit enters a shift register, it pushes out
the register’s previous occupant.

Example 1. Let the input be 1011011000.... By looking at Figure 3 and the following table,
one can see that the output is 1010000011....

4

Figure 2: Shift Register

Figure 3: A Message in a Shift Register

Input Shift Register Output

1 000 1
0 100 0
1 010 1
1 101 0
0 110 0
1 011 0
1 101 0
0 110 0
0 011 1
0 001 1

Table of Inputs and Outputs from Example 1

Figure 4 shows an example of a shift register with feedback. This sends some of the
bits from the message back through the shift registers. For a more in-depth treatment of
convolutional codes, one can see [Fo].

2.3 Benefts of the Components of Turbo Codes in Decoding

Each component of a turbo code works to preserve the original message. Adding redundancy
gives the decoders multiple places to check when trying to correct errors. Permutations help

5

Figure 4: A Shift Register with Feedback

to scatter the data so that if there is a burst of errors, instead of losing a big chunk of the
message, little bits are lost from various places, which are more easily corrected.

3 Interleavers

Before we discuss interleavers, we must start with a defnition.

Defnition 2. For any positive integer q, the set Zq is defned to be the set of integers
{0, 1, ..., q − 1}.

Defnition 3. An interleaver is a bijection (i.e. a permutation) that maps Zq onto Zq. We
call q the size, or (block) length of the interleaver.

The following is an example of a permutation that could be used as an interleaver.

Example 4. Let ˇ be the following permutation of Z6: � �
0 1 2 3 4 5

ˇ = .
4 2 5 0 3 1

Each number in the top row is mapped to a unique number below it.

There are two particular properties of interleavers that we are interested in: dispersion
and spread. For more information on these and how they are calculated, see Sections 7 and
8.

4 Finite Fields

In order to construct our interleavers, we use fnite felds. Finite felds and fnite feld
arithmetic provide a way to create algebraic interleavers. With algebraic interleavers, we
can construct an explicit formula for a permutation. For permutations with large block
length, using a formula could be more eÿcient than storing and looking up elements of a
random permutation. For more details on the construction of interleavers, see Section 6.

6

Defnition 5. A feld F is a set of elements with two operations defned on the set, “addi-
tion” and “multiplication,” such that the following properties hold:

(i) Closure: 8a, b 2 F, a · b 2 F, and a + b 2 F

(ii) Commutativity: 8a, b 2 F, a + b = b + a, and a · b = b · a

(iii) Associativity: 8a, b, c 2 F, (a + b) + c = a + (b + c), and (a · b) · c = a · (b · c)

(iv) Distributivity: 8a, b, c 2 F, a · (b + c) = (a · b) + (a · c)

(v) Identity: a + 0 = a, a · 1 = a, where a, 0, 1 2 F

(vi) Additive Inverses: 8a 2 F, 9 (−a) 2 F such that a + (−a) = 0

(vii) Multiplicative Inverses: 8a 2 F, a =6 0, 9 b 2 F such that a · b = 1

Example 6. The set of natural numbers N is not a feld because 2, for example, has neither
an additive nor a multiplicative inverse. On the other hand, Q and R are felds.

Theorem 7. The set of integers Zp is a feld if and only if p is prime.

It should be noted that if p is prime, we often use the notation Fp = Zp. However, one
needs to be careful because if p is not prime, Fp and Zp have di�erent meanings.

Defnition 8. A feld is a fnite feld if it contains only a fnite number of elements.

Theorem 9. There exists a feld with q elements if and only if q = pr , where p is prime.
We denote this by Fq.

For proofs of Theorems 7 and 9, one can see [Ro].

Defnition 10. Given Fp, defne the set Fpr for any positive integer r as the set of polynomials
of degree at most r − 1 with coeÿcients in Fp:

Fpr = {c0 + c1x + c2x 2 + ... + cr−1x r−1|ci 2 Fp}

Example 11. The set of all polynomials of degree 2 or less with coeÿcients 0 or 1 is
F8 = F23 = {0, 1, x, x2 , 1 + x, 1 + x2, x + x2 , 1 + x + x2}.

Now that we have the defned the set Fpr , we must examine additional properties of
fnite felds. These elements lend themselves well to work with interleaver construction. The
notion of irreducible polynomials is key to giving felds more structure.

7

4.1 Irreducible Polynomials

Defnition 12. A polynomial is irreducible over a feld F if it cannot be written in the form
f(x) = g(x)h(x) where g(x), h(x) are non-constant polynomials of degree less than that of
f(x).

Theorem 13. For any positive integer, m, and a prime, p, there exists a polynomial, f , of
degree m with coeÿcients in Fp that is irreducible.

For a proof of Theorem 13, see [Ro].

The most important use for irreducible polynomials in giving felds more structure is in
the defnition of multiplication in a fnite feld, which will be detailed after a discussion on
addition in a fnite feld.

4.2 Addition and Multiplication in Finite Fields

To add two polynomials in a fnite feld, one simply needs to add them together and reduce
the coeÿcients modulo p.

Example 14. Adding 1 + x and 1 + x + x2 in F23 gives:

(1 + x) + (1 + x + x 2) = 2 + 2x + x 2 � x 2 mod 2.

So (1 + x) + (1 + x + x2) = x2 .

Multiplication in Fpr is done by the following process:

(i) Fix an irreducible polynomial h(x) of degree r with coeÿcients in Fp. This is to be
used for the multiplication of any pair of polynomials.

(ii) For two polynomials f and g, compute f · g in the normal fashion.

(iii) Divide f · g by h. The remainder is defned to be the product of f(x) and g(x) in Fpr .

Example 15. Working over F8, take h(x) = x3 + x + 1. We want to determine the product
2 2 3of x and x . First, we compute x · x = x . Dividing this by h(x) = x3 + x + 1, we get a

quotient of 1 and a remainder of 1 + x. Therefore x · x2 = 1 + x in F8.

Di�erent choices for h(x) will lead to di�erent defnitions of multiplication. If a di�erent
h(x) is fxed, then the products of polynomials f, g will be di�erent in general. Therefore,
it is important that once an h(x) is set for a problem, it is not changed. To indicate which
irreducible polynomial we are using, we use the notation Fp[x]/hh(x)i instead of Fpr .

8

�

� � � � � � � �

�

� � �

� � �
�

�

�
�
� �
� � �
� � � � �
� � � � � � � �
� � � � �
� �

� � � �

�
� � � � �

�

�
�
�
� � �
� � � � � � � � � �
�

� � � � � �

4.3 Constructing Finite Fields Using Primitive Polynomials

We now have enough knowledge of fnite felds and polynomials to examine an alternative
method of constructing fnite felds. In fact, one can use certain irreducible polynomials to
write the elements of a the feld as powers of a single element. This is key in describing the
algebraic interleavers used in turbo codes, where feld arithmetic is done.

For clarifcation, a brief side note must be made before moving on. Typically, the variable
is used instead of x when constructing fnite felds:

2 2 2F8 = {0, 1, , , 1 + , 1 + , + , 1 + + 2}.

The following defnition describes the type of polynomial used to write write the nonzero
elements of a feld as powers of a single variable .

Defnition 16. We say that an irreducible polynomial h(x) 2 Fp[x] of degree r is called
primitive if Fp[x]/hh(x)i = {0, 1, , 2 , . . . , pr −2}.

Example 17. Using the primitive polynomial h() = 3 + +1, we can produce the nonzero
elements of F8 using only powers of :

i i

1
2 2

3 3 = + 1
4 4 = 2 +
5 5 = 3 + = 2 + + 1
6 6 = 3 + 2 + 2= + 1 + 2 + = 1 +
7 7 = 3+ = + + 1 = 1
8 8 =

Powers of using primitive polynomial h() = 3 + + 1

Example 18. If we had not used a primitive polynomial, we would not produce all of the
nonzero elements of the feld. We simplify the process again by computing powers of . To
produce F16 from F2, fx h() = 4 + 3 + 2 + + 1. This polynomial is irreducible over
F2; however, the calculations below show that it is not primitive.

i i

1
2 2

3 3

4 3 + 2 + + 1
5 4 + 3 + 2 + = 3 + 2 + + 1 + 3 + 2 + = 1
6
. . .

. . .

Powers of using the non-primitive polynomial h() = 4 + 3 + 2 + + 1

9

� � � � � �

� � �

� �
 � � �
 �

� � �

� �
 � � �
 �

� �
� �

� � � �

� �

� �
� � � � � �

� � � �

The following theorem promises the existence of primitive polynomials for use in the
construction of a fnite feld.

Theorem 19. For any positive integer r, there exists a primitive polynomial of degree r over
Fp.

For a proof of theorem 19, see [Pr].

5 Monomial Orders

Another way in which interleavers can be varied is through monomial orderings. We will
use monomial orders as a way to order vectors before the components are permuted. These
orders are discussed in further detail in Section 6. To begin, we will frst look at the defnition
of total orders.

Defnition 20. We say “<” is a total order on Zn if and only if all the following hold:

(i) for all 6= 2 Zn , < or <

(ii) for all 2 Zn , �

(iii) for all , , 2 Zn , if < and < , then <

The next defnition places the fnal two conditions on an order for it to be called a
monomial order, which can then be used in the construction of an interleaver.

Defnition 21. A total order on Zn is called a monomial order if and only if

(A) for all 2 Nn , if 6= 0, then > 0

(B) for all , , 2 Zn , if > , then + > +

5.1 Types of Monomial Orderings

There are three types of orderings that we will consider; lexicographic, graded lexicographic,
and graded reverse lexicographic. Their defnitions all follow.

Defnition 22. Lexicographic Order is the order such that < if and only if the frst
non-zero component of − is positive.

Example 23. Let = (0, 1, 3, −2, 6) and = (0, 1, 3, 10, −20). After computing − =
(0, 0, 0, 12, −26), we can see that the frst nonzero component, 12, is positive. Therefore,

< .

Defnition 24. Graded Lexicographic Order is the order such that < if and only ifP P P P n n n n
i < i or i = i and the leftmost nonzero component of −i=1 i=1 i=1 i=1

is positive, where i and i represent the ith components of and respectively.

10

� � � �
� �

� �

� �
� � � �

� � � � � �

� � � �
� �

� �

� � � � � �

�

P P
Example 25. Let = (0, 1, 3, −2, 6) and = (0, 1, 3, 10, −6). Now, n

i = n
i = i=1 i=1

8. Therefore, we need to look at − = (0, 0, 0, 12, −12). The leftmost nonzero component,
12, is positive. Hence, < .

Defnition 26. Graded Reverse Lexicographic Order is the order such that <P P P P n n n nif and only if i < i or i = i and the rightmost nonzero i=1 i=1 i=1 i=1
component of − is negative, where i and i represent the ith component of and
respectively. P n P nExample 27. Let = (0, 1, 3, −2, 6) and = (0, 1, 3, 10, −6). Now, i = i = i=1 i=1
8. Consequently, we need to look at − = (0, 0, 0, 12, −12). The rightmost nonzero
component, -12, is negative so < .

We now note a theorem regarding monomial orderings that was crucial in the program
we used to create turbo code interleavers. The interleaver creation program that we created
uses an ordering matrix as one of its arguments.

Theorem 28. Let M be an n by n invertible matrix with nonnegative, real entries. For
, 2 Nn , defne < if and only if the leftmost nonzero component of M(−) is

positive. Then, this order is a monomial order.

For a proof of Theorem 28, see [JoMo]. From Theorem 28, one can see that there
are infnitely many monomial orderings, since the entries of a matrix can be created from
infnitely many numbers.

6 Constructing Algebraic Interleavers with Finite Fields

In this section, we will construct interleavers using the tools of the previous sections. Our
permutation will consist of a composition of maps:

ˇ−1 ˇ−1
ˇ1 ˇ2 ˇ3 2 1Zpr −! (Zp)

r −! Fpr −! Fpr −! (Zp)
r −! Zpr .

The following steps detail the procedure for constructing an algebraic interleaver:

(i)A Using base p representation: Rewrite each integer c in Zpr in its base p representation:
1 2 r−1c = c0 + c1p + c2p + ... + cr−1p . Then place the coeÿcients of c into a vector:

ˇ1(c) = (c0, c1, ..., cr−1).

(i)B Using a monomial ordering: For a given monomial ordering, order the vectors of (Zp)
r

in ascending order: w0 < ... < wpr −1. Then defne ˇ1(c) = wc. P r−1 i(i) Defne ˇ2(w0, w1, ..., wr−1) = i=0 wi .

(ii) Choose ˇ3 : Fpr ! Fpr to be any permutation of Fpr . For our studies, ˇ3 is usually of
the form x 7! xi for some i.

11

� �
� �

� � � �

� � �
� �

� � �

Example 29. Here is an example using the lexicographic order and the permutation x 7! x3:

F8 ! F8 by x 7! x 3

F8 = F2/hx 3 + x + 1i

Z23 (Z2)
3 F23 F23 (Z2)

3 Z23

0 (0, 0, 0) 0 0 (0, 0, 0) 0
1 (0, 0, 1) 2 21 + (1, 0, 1) 5
2 (0, 1, 0) 1 + (1, 1, 0) 6
3 (0, 1, 1) 2+ 21 + + (1, 1, 1) 7
4 (1, 0, 0) 1 1 (1, 0, 0) 4
5 (1, 0, 1) 21 + 2+ (0, 1, 1) 3
6 (1, 1, 0) 1 + 2 (0, 0, 1) 1
7 (1, 1, 1) 21 + + (0, 1, 0) 2

6.1 Monomial Permutations

In our research, we tested only monomial permutations rather than polynomial permutations.
We originally tried to create permutation polynomials, however these took both a long time
to calculate and run in simulations. Because monomial permutations were quicker to generate
and test, they were the most practical for us to use.

Defnition 30. A permutation monomial is a monomial that is also a permutation in
Zp ! Zp where p is prime.

The following theorems give the criteria for permutation monomials for Zp ! Zp when
p is prime. These provided us with an easier way of generating permutations to use, along
with an assuredness that they were indeed permutations.

Theorem 31. If p is prime and i is an integer relatively prime to p − 1, then fi : Zp !
Zp given by fi(x) = xi is a permutation.

Proof. Suppose that p is prime and i is an integer relatively prime to p. Since i is relatively
prime to p, the gcd(i, p−1) = 1. This implies that there exist a, b 2 Z such that ai+b(p−1) =

(ai+b(p−1)) 11. Then x = x . Also, gcd(x, p) = 1 when x 2 {1, ..., p − 1}. By Fermat’s Little
p−1 � 1Theorem, x mod p. Then,

x = 1 x

= (ai+b(p−1))x

= ai b(p−1)x x

= ai1b x

= ai x .

12

When x = 0, we have fi(0) = 0. As we are working in a fnite feld, fi is invertible if we
ijcan fnd j such that x = x. Furthermore, if fi is invertible, then this implies that it is a

permutation. We know fi is invertible because xai = x. So, it is a permutation.

In fact, a more general result holds, which is given in the following theorem.

Theorem 32. The monomial xi 2 Fq[x] is a permutation monomial of Fq if and only if
gcd(i, q − 1) = 1.

For a proof of Theorem 32 see [JoMo].

7 Dispersion

In order to study the “randomness” of an interleaver, we must calculate the dispersion.
This property will help us compare the distance between two values in Zq and the distance
between their permuted images. A high dispersion indicates a variety of the permuted
distances between the elements. The frst step of calculating the dispersion is acquiring a
complete list of di�erences.

Defnition 33. Given a permutation ˇ of Zq, the list of di �erences of ˇ is defned to be
the set

D(ˇ) = {(j − i, ˇ(j) − ˇ(i)) | 0 � i < j < q}.

Example 34. We compute the list of di�erences for the following permutation: � �
ˇ =

0
4

1
2

2
5

3
0

4
3

5
1

.

We begin by calculating all of the pairs for which the input values are of distance 1 away
from each other:

(1 − 0, ˇ(1) − ˇ(0)) = (1, −2),

(2 − 1, ˇ(2) − ˇ(1)) = (1, 3),

(3 − 2, ˇ(3) − ˇ(2)) = (1, −5),

(4 − 3, ˇ(4) − ˇ(3)) = (1, 3),

and
(5 − 4, ˇ(5) − ˇ(4)) = (1, −2).

So, the frst elements of the set D(ˇ) are (1, −2), (1, 3), and (1, −5). Because the list of
di�erences is a set, the repeated elements are not to be counted twice. We can continue
calculating the remaining pairs by checking inputs that are 2, 3, 4, and 5 away from each
other. Hence, the permutation has the following list of di�erences:

D(ˇ) = {(1, −2), (1, 3), (1, −5), (2, 1), (2, −2), (3, −4), (3, 1), (4, −1), (5, −3)}.

Therefore,
|D(ˇ)| = 9.

13

Defnition 35. Given a permutation ˇ, the dispersion of ˇ is given by

|D(ˇ)| |D(ˇ)|� � = q q(q−1)
2 2

From the previous example, we see that q = 6 because the permutation acts on 6 objects.
Furthermore, we know that the cardinality of D(ˇ) is 9. We can now calculate the dispersion
using the defnition:

|D(ˇ)| 9 9 3
= = = .

q(q−1) 6(5) 30 5
22 2

7.1 Conjecture

Pursuant to a question asked during a presentation, we decided to investigate whether or
not we could determine what proportion of permutations of a given size have a dispersion
around 0.8. This proved to be of particular interest, as permutations with this dispersion
tend to have the lowest bit error rates.

Upon looking into this, we have discovered that the mean dispersion for all permutations
of a given size are around .81. As one increases the size of the set acted on, the average
dispersion appears to converge to a number between 0.813 and .814. The standard deviation
away from this mean also decreases, and appears to go to zero, as the permutation length
gets larger.

We obtained the following data by testing samples of permutations of di�erent lengths
and calculating the average dispersion based on these samples. We also calculated the
standard deviation away from this mean. The frst chart has been calculated exactly, by
testing all possible permutations of the given permutation sizes. The data in the second
and third charts was obtained using sample data for the given block lengths. For sizes of 10
through 90, we used a sample size of 100000 permutations selected randomly of all possible
permutations, and for lengths of 100 to 1000, we used random sample sizes of 10000 from
all possible permutations. The reason for this is that as the permutation size increases, the
time to calculate the data also increases.

Exact Average Dispersion for Permutation Sizes Between 2 and 10
Length Average Dispersion Standard Deviation

2 1 0
3 0.8889 0.1721
4 0.8472 0.1766
5 0.8467 0.1495
6 0.8383 0.1274
7 0.8355 0.1000
8 0.8319 0.0866
9 0.8301 0.0737
10 0.8280 0.0657

14

Average Dispersion for Permutation Sizes Between 20 and 90 Based on a Random Sample
Size of 100000

Length Average Dispersion Standard Deviation

20 0.8206 0.0309
30 0.8183 0.0203
40 0.8171 0.0151
50 0.8163 0.0121
60 0.8158 0.0100
70 0.8155 0.0086
80 0.8153 0.0075
90 0.8151 0.0067

Average Dispersion for Permutation Sizes Between 100 and 1000 Based on a Random
Sample Size of 10000

Length Average Dispersion Standard Deviation

100 0.8150 6.108 × 10−3

200 0.8143 3.029 × 10−3

300 0.8141 1.994 × 10−3

400 0.8140 1.528 × 10−3

500 0.8139 1.229 × 10−3

600 0.8139 1.018 × 10−3

700 0.8138 8.707 × 10−4

800 0.8138 7.870 × 10−4

900 0.8137 6.963 × 10−4

1000 0.8137 6.217 × 10−4

It should be noted that in almost all permutation block lengths analyzed, we obtained
several permutations with a dispersion much lower than this mean. While we are not sure
as to why this is, it seems to be an interesting characteristic of algebraic permutations that
have a predetermined structure. This could be useful, as it gives some insight as to what
type of algebraic permutation one should choose based on dispersion.

8 Spread

We will now move on to examine another useful property of interleavers: spread. Given
a permutation ˇ, it is sometimes desirable to determine the relationship between a pair of
inputs and their corresponding output values. Specifcally, one might ask how spread apart
two outputs are if their inputs are a certain distance apart. We can study this property by
using a few defnitions of spread.

Defnition 36. Let ˇ : Zq ! Zq be a permutation. The spread of ˇ is the largest integer
s such that

|i − j| < s) |ˇ(i) − ˇ(j)| � s, for 1 � s � q (1)

where i, j are input values such that i 6= j.

15

Proposition 37. The spread of a permutation is always greater than or equal to 1.

Proof. For s = 1, we must test all input values that have a distance of less than 1 between
them. Since i 6= j, there will never exist two input values that have a distance of 0 between
them. Thus, the antecedent of (1) is always false. Consequently, the statement is always
true for s = 1. Hence, the spread of any permutation must be greater than or equal to 1.

Proposition 38. If s � 2 and satisfes |i − j| < s) |ˇ(i) − ˇ(j)| � s for all i 6= j, then for
all s0 � s,

|i − j| < s 0) |ˇ(i) − ˇ(j)| � s 0

for all i 6= j.

Proof. Let s � 2 and suppose |i − j| < s) |ˇ(i) − ˇ(j)| � s for all i 6= j. Suppose for some
s0 � s, |i − j| < s0 . Since |i − j| < s0 � s, |ˇ(i) − ˇ(j)| � s � s0 . Therefore, for all s0 � s,
|i − j| < s0) |ˇ(i) − ˇ(j)| � s0 for all i =6 j.

Example 39. For the following permutation, we calculate spread: � �
0 1 2 3 4 5

ˇ = .
4 2 5 0 3 1

We look at all the pairs for which |i − j| < 2, and check to see if |ˇ(i) − ˇ(j)| � 2.
Thus,

|ˇ(1) − ˇ(0)| = |2 − 4| = 2,

|ˇ(2) − ˇ(1)| = |5 − 1| = 4,

|ˇ(3) − ˇ(2)| = |0 − 5| = 5,

|ˇ(4) − ˇ(3)| = |3 − 0| = 3,

and
|ˇ(5) − ˇ(4)| = |1 − 3| = 2.

As we can see, all pairs of inputs that are less than 2 away from each other have a permuted
distance of at least 2 away from each other. Hence, s = 2 is a possible spread. We must
now consider the case for which s = 3. We examine all the pairs for which |i − j| < 3
and check if |ˇ(i) − ˇ(j)| � 3. First we will consider input values that are of distance 2 away
from each other; if the defnition holds for these inputs, we will check input values that are
of distance 1 away from each other. Thus

|ˇ(2) − ˇ(0)| = |4 − 5| = 1,

|ˇ(3) − ˇ(1)| = |2 − 0| = 2,

|ˇ(4) − ˇ(2)| = |5 − 3| = 2,

and
|ˇ(5) − ˇ(3)| = |0 − 1| = 1.

16

We can see that the input values 2 and 0 produce output values that are only of distance
1 away from each other, and so the spread cannot possibly be 3. Therefore, by Proposition
38, the spread of ˇ is 2. s = 2.

8.1 The Upper Bound for Spread

We will now present several lemmas and theorems with respect to the upper bound for spread.
Theorem 43 gives an upper bound for spread that we originally found in our research; the
following example and lemmas prepare for the theorem.

Consider the statement:

|i − j| < s) |ˇ(i) − ˇ(j)| � s,

and thus defne

A = {(i, j) 2 Zq × Zq| i 6= j, 1 � i, j � q},
Bs = {(i, j) 2 Zq × Zq | i 6= j and |i − j| < s}, and

Cs = {(i, j) 2 Zq × Zq | i 6= j and |ˇ(i) − ˇ(j)| � s}.

Then |A| = q2 − q, since there are q2 − q possible pairs (i, j) where i 6= j. We now turn to
a brief example that will help us determine a formula for Bs.

Example 40. For Z5 × Z5, we can list the pairs (i,j).

A list of all pairs (i, j), where 1 � i, j � q:

(0, 0) (1,0) (2,0) (3, 0) (4, 0)

(0,1) (1, 1) (2,1) (3,1) (4, 1)

(0,2) (1,2) (2, 2) (3,2) (4,2)

(0, 3) (1,3) (2,3) (3, 3) (4,3)

(0, 4) (1, 4) (2,4) (3,4) (4, 4)

The bolded sets make up B2 = {(i, j) 2 Z5 × Z5 | i 6= j and |i − j| < 2}, since they are
composed of inputs less than 2 apart. There are 4 + 4 = 8 sets that are bolded. Thus |B2| =
2(4) = 2(5 − 1). In the above chart, another chart for s = 3 is included, which combines the
bolded diagonals with the italicized diagonals. Therefore, there are 8+3+3 = 8+6 = 14 sets
that hold true. Thus |B3| = 2(4) + 2(3) = 2(5 − 1) + 2(5 − 2). Similarly, for s = 4, there are
14+2+2 = 16 sets that hold true, so |B4| = 2(4)+2(3)+2(2) = 2(5−1)+2(5−2)+2(5−3).
We write the preceding formulas vertically to see the pattern emerging:

s

s

s

=

=

=
.

2 : |B2| = 2(q − 1)

3 : |B3| = 2(q − 1) + 2(q − 2)

4 : |B4| = 2(q − 1) + 2(q − 2) + 2(q − 3)

. .

17

The following lemma results from generalizing the specifc values for |Bs| in the preceding
example. P s−1 2Lemma 41. For any q and s, we fnd |Bs| = 2 (q − k) = −2q + s + 2qs − s .k=1

Now that we have computed |Bs|, we turn fnd the cardinality of Cs.

Lemma 42. For any q and s, we fnd |Cs| = q2 + q − s − 2qs + s2 .

Proof. Let ˇ be a permutation. We can write Cs as:

Cs = {(i, j) 2 Zq × Zq | i 6= j and |ˇ(i) − ˇ(j)| � s}
= {(ˇ−1(i), ˇ−1(j)) 2 Zq × Zq | i 6= j and |i − j| � s}
= {(i, j) 2 Zq × Zq | i 6= j and |i − j| � s}

It is now clear that, for all s, A = Bs [Cs. Then |A| = |Bs [Cs| = |Bs| + |Cs|. Substituting
in the respective values and solving for |Cs|, we have

s−1X
q 2 − q = 2 (q − j) + |Cs|,

j=1

and so

s−1X
|Cs| = q 2 − q − 2 (q − j)

j=1

= q 2 + q − s − 2qs + s 2 .

p
Theorem 43. [AMSSI 2006] An upper bound for spread is b1

2 (1 + 2q − 2q2 − 2q + 1c,
where q is the length of the permutation.

Proof. Let q : Zq ! Zq be a permutation with spread s.
We consider the inequality |Bs| � |Cs|, using the values for |Bs| and |Cs| as developed in

Lemmas 41 and 42. Since |Bs| � |Cs|, we have

−2q + s + 2qs − s 2 � q 2 + q − s − 2qs + s 2 .

Thus,
0 � q 2 + 3q − 2s − 4qs + 2s 2

= 2s 2 + (−2 − 4q)s + (q 2 + 3q).

We solve the corresponding equality for s, using the quadratic equation: p
(2 + 4q) ± (2 + 4q)2 − 4 · 2 · (q2 + 3q)

s = .
2 · 2

18

Simplifying, we have � p �1
s = (1 + 2q) ± 2q2 − 2q + 1 .

2� � � �p p
Since 1

2 (1 + 2q) + 2q2 − 2q + 1 �
2
1 (1 + 2q) − 2q2 − 2q + 1 , by Proposition 38, we � �p

need only consider s = 1
2 (1 + 2q) − 2q2 − 2q + 1 . � �p

Reintroducing the inequality leads to s � 1
2 (1 + 2q) − 2q2 − 2q + 1 . Since the right

hand side may not be an integer, we take the foor of this function to fnd our upper bound
for spread is �

1 � p ��
(1 + 2q) − 2q2 − 2q + 1 .

2

It can also be shown that a more refned upper bound for the spread of a permutation of p pZq is b qc. The lemma below shows that there exists a permutation of Zq with spread q
whenever q is a perfect square.

Lemma 44. [AMSSI 2006] If q = s2 , then there exists a permutation with spread s.

Proof. Let i, j 2 Zq such that |i − j| < s. Without loss of generality, i > j. For all input
values i 6= j, we can write i and j in base s; i.e., i = a0 + sa1, and j = b0 + sb1, where
0 � an, bn � s − 1. We defne ˇ : Zq ! Zq by ˇ(a0 + sa1) = (s − 1 − a1) + sa0 and
ˇ(b0 + sb1) = (s − 1 − b1) + sb0.

Since |i − j| < s and i > j, either a1 = b1 or a1 = b1 + 1. We consider the two cases
separately.

Case 1: a1 = b1. Now,

|i − j| = |a0 + sa1 − b0 − sa1| = |a0 − b0|,

and by hypothesis, |a0 − b0| < s. Since i 6= j, |a0 − b0| � 1. Thus,

|ˇ(i) − ˇ(j)| = |ˇ(a0 + sa1) − ˇ(b0 + sb1)|,
= |(s − 1 − a1) + sa0 − (s − 1 − a1) + sb0|,
= s|(a0 − b0)|,
� s.

Case 2: a1 = b1 + 1. So

|i − j| = |a0 + s(b1 + 1) − b0 − sb1| = |a0 − b0 + s|

and by hypothesis, |a0 − b0 + s| < s. Thus (a0 − b0) < 0, so a0 < b0, and by defnition
0 < |a0 − b0| � s. When comparing the respective images of i and j,

|ˇ(i) − ˇ(j)| = |(s − 1 − b1 − 1) + sa0 − (s − 1 − b1) − sb0)|
= | − 1 + s(a0 − b0)|

19

and since both −1 and s(a0 − b0) are negative,

| − [1 + s(b0 − a0)]| = 1 + s(b0 − a0) � s

Using the ideas of Lemma 44, we can prove a more general result, namely, that for any p
positive integer q, there exists a permutation with spread b qc. We begin with an example
that helps motivate the ideas in the proof.

Example 45. We can design permutations that achieve the maximum spread for a given
permutation length q. In this example, we take q = 9. Then we defne each Ri for 0 � i � 2
as follows:

R2 = (2, 5, 8)

R1 = (1, 4, 7)

R0 = (0, 3, 6)

and so R = (2, 5, 8, 1, 4, 7, 0, 3, 6), in which case � �
0 1 2 3 4 5 6 7 8

ˇ =
2 5 8 1 4 7 0 3 6

By constructing ˇ in this manner, we create a permutation. In this example, ˇ has ap
spread of 3 = 9.

Lemma 46. [AMSSI 2006] If q � s2 , then there exists a permutation, ˇ, with spread at
least s.

Proof. Generalizing the notions developed in Example 45, for each integer i such that 0 � i �
s−1, defne Ri to be the fnite sequence of elements of Zq given by Ri = i, i+s, i+2s, ..., i+mis,
where mi is the largest integer such that i + mis � q − 1. Then, defne R to be the sequence
that is the concatenation of the sequences Rs−1, Rs−2, ..., R2, R1, R0. Defne ˇ : Zq) Zq to
be the permutation that sends 0, 1, 2, ..., q − 1 to the terms of R, respectively.

The terms on the ends of each row Ri are the largest in their row, with the maximum of
these being q − 1 (since all elements are in the range 0, ..., q − 1) and smallest being q − s,
because there are s rows. Thus, i + mis � q − s. Since 1 � i � s − 1 and, by hypothesis,
q � s2 , we have

(s − 1) + mis � i + mis

� q − s
� s 2 − s,

and so
mis � s 2 − 2s + 1.

Thus,

mi � s − 2 + 1
s
. (2)

20

We now proceed to show that the spread of ˇ is s. Let k, l 2 Zq such that k 6= l and
|k − l| < s. Without loss of generality, suppose l < k. Since |k − l| < s and each row Ri

has at least s terms, either ˇ(k) and ˇ(l) are in the same row or they are in adjacent rows
Ri, Ri−1. We consider these two cases separately.

If ˇ(k), ˇ(l) 2 Ri for some index i, then for some �, such that � > , ˇ(k) = i + �s and
ˇ(l) = i + s. Then |ˇ(k) − ˇ(l)| = (� −)s > s.

Otherwise, if ˇ(k) is a term of Ri and ˇ(l) is a term of Ri−1 (where 1 � i � s − 1), then
for some �, , ˇ(k) = i + �s and ˇ(l) = (i − 1) + s. The last term of Ri is i + mis and so

ˇ−1(i + mis) − k = ˇ−1(i + mis) − ˇ−1(i + �s) = mi − �. (3)

Moreover, since i − 1 is the frst term of Ri−1, and i + mis is the last term of Ri,

ˇ−1(i − 1) − ˇ−1(i + mis) = 1. (4)

Since ˇ(l) = (i − 1) + s is also a term of Ri−1,

l − ˇ−1(i − 1) = ˇ−1((i − 1) + s) − ˇ−1(i − 1) = (5)

Putting (3), (4), and (5) together, � � � � � �
l − k = l − ˇ−1(i − 1) + ˇ−1(i − 1) − ˇ−1(i + mis) + ˇ−1(i + mis) − k

= + 1 + mi − �.

Since we have l − k < s, − � + mi + 1 < s, and so

− � + mi + 2 � s.

Thus,

− � � s − 2 − mi (6)

Putting (2) and (6) together, we have

− � � s − 2 − mi

1 � s − 2 − s + 2 −
s

1 � −
s

Rearranging the last inequality leads to

1
� − � . (7)

s

Then, � > by (7), which implies � − � 1, and so we have

|ˇ(k) − ˇ(l)| = |(i + �s) − ((i − 1) + s)|
= 1 + (� −)s

� s.

21

� � �
� � �

�
� �

� � � � � � � �

� �

� �

It has now been shown that, for a given spread s, one can fnd a suÿciently large feld
such that the spread of at least one permutation of the feld is s. This might lead one to
wonder if spread has an upper bound related to the size of the permutation. The following
theorem shows that a bound exists.

p
Theorem 47. [AMSSI 2006] For any permutation ˇ of Zq, the spread of ˇ � b qc. In p
fact, by Lemma 46, there exists a permutation with spread equal to b qc.

Proof. Let ˇ be a permutation of Zq with spread s. Consider and interval I = {k, k+1, ..., k+
(s − 1)} � Zq such that s − 1 2 I, and defne ˇ(I) = {ˇ(j)|j 2 I}. Because the spread of
ˇ is s, and since all the elements of I are within a distance of s − 1 of each other, all of the
images in ˇ(I) must be a distance of at least s from one another. Therefore, 0, 1, ..., s − 2
are not in ˇ(I). Write the s elements of I in ascending order, i.e., ˇ(I) = { 1, 2, ..., s}
where 1 < 2 < ... < s. Since 0, 1, ..., s − 2 are not in ˇ(I), s − 1 is the smallest entry of
ˇ(I). Therefore, 1 = s − 1. Since the elements of ˇ(I) are at least s apart from each other,

j − j−1 � s for all j = 2, 3, ..., s. Thus

s − 1 = (s − s−1) + (s−1 + s−2) + · · · + (2 − 1)

� (s − 1)s

= s 2 − s.

Rearranging, we obtain

2 − ss � 1 + s

= s − 1 + s 2 − s
= s 2 − 1.

p
Therefore, since s 2 Zq, we have q −1 � s, and so q −1 � s2 −1. Thus, q � s2 , so q � s.
Since s is an integer, it follows that p

s � b qc.

8.2 Other Measures of Spread

We will now consider some other measures of spread in order to study the distance between
permuted values. There are four measures that can be examined: spreading factors, extreme
spreading factors, s-parameters, and spread factors.

Defnition 48. The spreading factors of ˇ = Zq ! Zq are all points (s, t) that satisfy

|i − j| < s) |ˇ(i) − ˇ(j)| � t, (8)

for all i, j 2 Zq such that i =6 j.

Calculating the spreading factors is an extremely long process without a computer pro-
gram, as the following example shows.

22

Example 49. � �
ˇ =

0
0

1
3

2
6

3
9

4
1

5
4

6
7

7
10

8
2

9
5

10
8

We consider (2, 3) and determine if it is a spreading factor. That is, we test all pairs of input
values (i, j) such that |i − j| < 2 and determine if the distance between their output values
|ˇ(i) − ˇ(j)| is at least 3. Starting with input values (2, 1), we see that,

|2 − 1| < 2 and |ˇ(2) − ˇ(1)| = |6 − 3| = 3 � 2

The same process has to be repeated for input values (3, 2), (4, 3), ..., (10, 9) because they are
pairs of indices of distance less than 2 away from each other. If (8) is satisfed for all these
pairs in addition to (2, 1), then we know that (2, 3) is a spreading factor. In order to get all
possible spreading factors, this process must be completed for all pairs (s, t) where s, t 2 Zq.
After checking all possible spreading factors, we can complete a graph of all the spreading
factors that were found. The following graph is a plot of all the spreading factors of ˇ; each
one is marked with an x.

Figure 5: Plot of Spreading Factors, Extreme Spreading Factors, and the s-Parameter

23

We can study this graph further and gain more insight into spread if we introduce the
following properties: extreme spreading factors and s-parameters.

Defnition 50. A spreading factor (s, t) is an extreme spreading factor if either (s+1, t)
or (s, t + 1) is not a spreading factor.

Example 51. The spreading factors with boxes around them in Figure 5 are extreme spread-
ing factors because spreading factors either do not exist directly to the right or directly above
them.

Defnition 52. The s-parameter is the maximum value of s such that for some s � t,
(s, t) is an extreme spreading factor.

Example 53. In order to fnd the s-parameter in Figure 5, we consider all the extreme
spreading factors. The largest value of s such that s � t is s = 3. Therefore, the s-parameter
is 3 and is circled in Figure 5.

Defnition 54. For all input values i < j and output values ˇ(i), ˇ(j), and q representing
the length of the permutation, let

�(i, j) = |i − j|q + |ˇ(i) − ˇ(j)|q
where

|x − y|q = min[(x − y) mod q, (y − x) mod q]

Another measure of spread we examined was the spread factor, not to be confused with
spreading factors. The spread factor is not equal to spread, however, it seems that when one
increases, they both increase, due to the defnitions of both.

Defnition 55. The spread factor of a permutation ˇ is the minimum �(i, j) over all i < j.

Example 56. Consider the following permutation:� �
0 1 2 3 4 5

ˇ =
4 2 5 0 3 1

In order to fnd the spread factor, we must frst make a list of all the pairs of input values
for which i < j.

(0, 1) (0, 2) (0, 3) (0, 4) (0, 5)
(1, 2) (1, 3) (1, 4) (1, 5)
(2, 3) (2, 4) (2, 5)
(3, 4) (3, 5)
(4, 5)

Now that we have all possible pairs, we can now calculate �(i, j) for each pair.

�(0, 1) = |0 − 1|6 + |ˇ(0) − ˇ(1)|6 = 3 �(0, 2) = |0 − 2|6 + |ˇ(0) − ˇ(2)|6 = 3
�(0, 3) = |0 − 3|6 + |ˇ(0) − ˇ(3)|6 = 5 �(0, 4) = |0 − 4|6 + |ˇ(0) − ˇ(4)|6 = 3
�(0, 5) = |0 − 5|6 + |ˇ(0) − ˇ(5)|6 = 4 �(1, 2) = |1 − 2|6 + |ˇ(1) − ˇ(2)|6 = 4
�(1, 3) = |1 − 3|6 + |ˇ(1) − ˇ(3)|6 = 4 �(1, 4) = |1 − 4|6 + |ˇ(1) − ˇ(4)|6 = 4
�(1, 5) = |1 − 5|6 + |ˇ(1) − ˇ(5)|6 = 3 �(2, 3) = |2 − 3|6 + |ˇ(2) − ˇ(3)|6 = 2
�(2, 4) = |2 − 4|6 + |ˇ(2) − ˇ(4)|6 = 4 �(2, 5) = |2 − 5|6 + |ˇ(2) − ˇ(5)|6 = 5
�(3, 4) = |3 − 4|6 + |ˇ(3) − ˇ(4)|6 = 4 �(3, 5) = |3 − 5|6 + |ˇ(3) − ˇ(5)|6 = 3
�(4, 5) = |4 − 5|6 + |ˇ(4) − ˇ(5)|6 = 3

24

We can see that the pair with the minimum value of �(i, j) is (2, 3), with a value of 2. Hence,
the spread factor is 2 for this permutation.

8.3 Spread and S-Parameters Coincide: Our Theoretical Results

It can be shown that the s-parameter of a permutation is equal to its spread. Before we
state this theorem and its proof, we will frst prove three lemmas. The frst lemma deals
with a bound for the spreading factor.

Lemma 57. [AMSSI 2006] The sth column of the spreading factor plot is bounded for
s � 2; that is for all s � 2, there are only fnitely many values of t such that (s, t) is a
spreading factor.

Proof. For any permutation of Zq, the largest distance any two i, j 2 Zq can be from one
another is q − 1. This is also true for any two ˇ(i), ˇ(j). By the defnition of spreading
factor, |i − j| < s) |ˇ(i) − ˇ(j)| � t. The value of t can be at most q − 1. Thus, there are
fnitely many values of t such that (s, t) is a spreading factor.

The following lemma guarantees the existence of an extreme spreading factor based on
the existence of a spreading factor (s, s).

Lemma 58. [AMSSI 2006] If (s, s) is a spreading factor, then there exists s � t such
that (s, t) is an extreme spreading factor.

Proof. Let (s, s) be a spreading factor. By Lemma 57, let t be the upper bound for the sth

column. Then, (s, t + 1) is not a spreading factor. Therefore (s, t) is an extreme spreading
factor.

The fnal lemma guarantees that (s, s) is a spreading factor if s is the s-parameter.

Lemma 59. [AMSSI 2006] If s is the s-parameter of a permutation, then (s, s) is a
spreading factor.

Proof. For some t � s, let (s, t) be an extreme spreading factor as defned in Defnition 52.
Then by the defnition of the s-parameter, we have for all i 6= j, |i−j| < s) |ˇ(i)−ˇ(j)| � t.
Thus for all t0 < t, all pairs (s, t0) are spreading factors, including t0 = s. Thus (s, s) is a
spreading factor.

In combining the three lemmas, it is possible to prove a very interesting result, namely
that the defnitions of s-parameter and spread are equivalent. Thus, the following theorem
links the two defnitions of spread.

Theorem 60. [AMSSI 2006] The s-parameter of a permutation is equal to its spread.

Proof. Let s be the s-parameter of a permutation. By Lemma 59, (s, s) is a spreading factor.
For contradiction, suppose (s + 1, s + 1) is also a spreading factor. By Lemma 58, (s + 1, t)
is an extreme spreading factor for some t � s + 1. Since (s + 1, t) is an extreme spreading

25

factor, then the s-parameter is at least s + 1. However, the s-parameter is s, which implies
that s + 1 � s. This is a contradiction. Therefore, (s + 1, s + 1) is not a spreading factor.

Since (s, s) is a spreading factor, by the defnition of spreading factor, |i − j| < s)
|ˇ(i) − ˇ(j)| � s. So s satisfes (1). However, since (s + 1, s + 1) is not a spreading factor,
then for some i 6= j, |i − j| < s + 1 ; |ˇ(i) − ˇ(j)| � s + 1. So s + 1 does not satisfy (1).
Therefore, s is the spread. Thus, the s-parameter of a permutation is equal to its spread.

9 Simulations

In order to test the e�ectiveness of our interleavers, we ran various simulations in a turbo
simulator program. The turbo simulator was developed by Yufei Wu [Wu]. To run the
simulation, specify a feld, a monomial order, and a polynomial. In doing our simulations
we worked with the following items:

Defnition 61. Bits are the pieces of information that make up our messages. They are in
the form 0 or 1.

Defnition 62. Frames fnite blocks of data of a specifed length. In our simulations, this
length is the cardinality of the feld being used.

Defnition 63. The Signal to Noise Ratio (EbN0) is the ratio of the strength of the
signal to the strength of the surrounding noise in decibels (dB). In particular, we will be
looking at signal to noise ratios of 0, 0.5, 1, 1.5, and 2 dB.

Defnition 64. The Bit Error Rate (BER) is the number of uncorrectable corrupted bits
over the total number of bits sent.

The turbo simulator takes as input fve items: a permutation polynomial, a convolutional
code, a monomial order, the number of decoding iterations, and a frame error limit.

The permutation polynomial and monomial order are those built using the methods from
previous sections. In our simulator, these were both specifed as arguments. The last three
input items were coded into our turbo simulator during our simulations. The number of
decoding iterations specifed how many times the decoders passed an updated version of the
message back and forth to take advantage of belief propagation. This value was set to 8
in our simulations, which means each decoder had 8 chances to try to correct any errors
and check this “corrected” message with the other decoder. The frame error limit was the
stopping condition in our simulation. When the number of uncorrectable errors reached this
number, the simulation stopped. This number was set at 100 errors in our simulations.

The fnal BER is calculated after reaching the frame error limit at each signal to noise
ratio. By looking at the BER for each signal to noise ratio, we can see how our various
interleavers performed.

26

10 Results

Our simulations aim to examine how the properties of permutations (spread and dispersion)
a�ect the error-correcting ability of turbo codes and to examine how di�erent monomial
orderings may a�ect a turbo code. We look at these factors over felds of di� ering sizes.

In general, we have found that in smaller felds, changing interleavers in order to obtain
di�erent spreads and dispersions has little e� ect on the ability of the codes to correct errors.
It seems that the felds are too small to allow for much e�ect of the properties on the turbo
codes. However, in larger felds like F28 or F53 , the di�erences that occur with varying
spreads, dispersions, and monomial orderings can be quite drastic. In practice, much larger
felds than even these are used because of improved error correcting ability when using large
block lengths.

Monomial orderings provide a clear change in permutation action. Without an ordering
applied, the spread of a permutation, using a monomial map, is always one, since 0 and 1 are
always mapped to themselves under any monomial. Thus, monomial orders are a good place
to look to see how dispersion a�ects a permutation, since by using no monomial ordering one
can keep spread constant. Also, these orders provide insight into how changes in ordering
can a �ect the performance of a turbo code, even those whose interleavers have similar spread
and dispersion.

Spread and dispersion seem to be distinct factors in turbo code performance. In general,
it seems that spread and dispersion have a weak inverse relationship. Thus, for very high
spreads, the permutations tend to have relatively small dispersions. Examination of data
has led to the hypothesis that higher dispersion means a better turbo code. Thus, it would
seem that interleavers with smaller spreads would consequently create a better turbo code,
however, we have also seen that spread can give an indication as to turbo code performance
on its own. If dispersion is the same, a higher spread often results in slightly improved
performance. Thus, though higher dispersion implies better error correcting in most cases,
further examination is necessary to fnd the reasons for any discrepancies and create a sound
theory on turbo code performance. Following are several graphs that illustrate the positive
correlation between high dispersion and better performance:

27

While these graphs exhibit curves with varying spread, dispersion, and monomial ordering,
all demonstrate that permutations with higher dispersion perform better than those with
lower dispersion. We can also see that the permutations with similar dispersions perform
comparably. Dispersion appears to be the principle indicator of turbo code performance
rather than spread, as permutations with higher spread but lower dispersion do not perform
as well as those with lower spread but higher dispersion.

Di�erences in performance between permutations composed of di� erent monomial order-
ings, varying spreads, and di�erent dispersions are apparent. Thus, continuing to study the
properties of permutations is a worthwhile pursuit. In order to gain a deeper understanding
of our results, please see Appendix A for more graphs.

10.1 Possible Exceptions to Above Conjecture

While high dispersion corresponds with low bit error rates, there are some cases that appear
to be exceptions to this general trend. Extreme spreads, like fve in F53 and three and four in
F28 , seem to create an unpredictable variance of performance in a permutation regardless of
monomial ordering or dispersion. While the permutations with these spreads have very low
dispersion, their bit error rates are comparable to those with higher dispersion. The same
unstable properties manifest themselves when dispersions are very low (which may be a result
of the implied high spread). Occasionally, these permutations with both high spread and low

28

�

dispersion outperform those with higher dispersion. There are only a few examples of these
exceptions, and out of the many block lengths we tested, only two (F28 and F53 specifcally
using lexicographic order) do not seem to follow the generally positive correlation between
high dispersion and low bit error rates. The two examples are:

Here, the curves of permutations with low dispersions perform similarly or better than those
with high dispersions. Since we found only two exceptions out of the large number of felds
we tested, further examination of other properties or characteristics of these permutations
is necessary to explain their unexpected behavior.

10.2 A Comparison of Di erent Monomial Orderings

Di�erent monomial orderings can change the spread, dispersion, and permuted values of a
permutation monomial. Thus, it is possible that a particular monomial will perform better
when using one monomial ordering over another. For example:

29

Here, x 7! x32 has the highest dispersion when Graded Reverse Lex is used, as well as the
lowest bit error rate. In Lex Ordering, it has the lowest dispersion as well as the highest bit
error rate. When comparing Lex and Graded Lex, Graded Lex, with the higher dispersion,
has a lower bit error rate. Given the di�erences in their respective dispersions, however, one
may expect a more noticeable di�erence in performance. This could possibly be attributed
to the small sample sizes we used in the turbo simulator. Still, while the di�erence is slight,
the higher dispersion yields a lower bit error rate.

Similar observations were made when comparing x 7! x64 in F27 :

Here, the higher dispersion (also in Graded Reverse Lex) once again yields the lowest bit
error rate. Note also that the spread is less than the other two, which once again seems to
indicate that dispersion is the greater determinant of performance.

When compared to other permutations of the same block length under the same monomial
orderings, dispersion seems to be a good indicator of performance. The fact that when the
two monomial orderings (Lex and Graded Lex) do not perform exactly as expected based on
dispersion alone could perhaps indicate that the particular monomial ordering used has some
e�ect on performance as well. Along these lines, it should be noted that when using Graded
Reverse Lex in all felds we examined, it is very rare that a permutation has a dispersion
less than .7000, with the exception of the mapping x 7! x, which by default has a very low
dispersion. This is important, as .7000 seems to be a sort of breaking point between good
and poor performance. Permutations with dispersion higher than .7000 perform comparably,
while those with dispersion less than .7000 perform with distinctly poorer bit error rates.

10.3 Permutations That Do Not Use Monomial Orders

After examining how permutations performed under di�erent monomial orderings, we looked
at some without any ordering at all. Because we examined only monomials for creating our
permutations, the spreads for all the permutations created without an imposed ordering is
one, simply because 1 and 0 are always mapped next to themselves. With spread being
constant regardless of the permutation, better comparisons of the e�ects of dispersion can

30

be made. Here are some comparisons of di�erent average dispersions of permutations in
several felds. The dispersion values were divided and averaged together in separate intervals
as follows : [0.0000, 0.4999], [0.5000, 0.6999], and [0.7000, 1.0000]. The ranges were based
on how frequently dispersions in certain ranges appear, as well as distinct di�erences in
performance of di�erent dispersion values/ranges. With the felds we tested, dispersions
never fell within the second interval. Thus there are only two curves on each graph.

As expected, when di�erent average dispersions are compared, we see that the higher
dispersion yields lower bit error rates. Since the value for spread in all permutations is s = 1
when no ordering is used, dispersion appears to be the primary indicator for turbo code
performance; in all examples we tested, high dispersion corresponded to low bit error rates.

10.4 Semi-Random Permutations versus Algebraic Permutations

Defnition 65. A semi-random permutation of Zq can be generated by choosing images
for 0, 1, ..., q−1, one after the other, so that each stage of the permutation has a pre-specifed
spread. For the full algorithm, see Appendix B.10.1

We compared the performance of semi-random permutations to the performance of the
algebraic permutations we created. We did this in part to see if the method used in construct-
ing the permutation had an e� ect on their performance. When compared with permutations

31

of similar dispersion, both semi-random and algebraic permutations perform just as well.
There are some things to note. When semi-random permutations are generated, regard-
less of spread, they typically have a dispersion around 0.81, unlike most of the algebraic
permutations in which dispersion values tend to decrease as the spread increases.

32

Thus, because each permutation has a similar dispersion, they all perform in much the
same way. This also demonstrates that the dispersion is a better indicator of performance
than spread.

10.5 Pseudo-Random Permutations versus Algebraic Permutations

Plots of both a pseudo-random permutation and an algebraic one of 212 letters.

The frst plot, of the algebraic permutation created using x 7! x2 , has a clear pattern,
while the second, of a pseudo-random permutation, lacks any consistent pattern. Because
dispersion is a measure of the randomness of a permutation, we conjecture that the frst
has a low dispersion, while the second has a higher dispersion. In fact, the dispersions of
the algebraic permutation is 0.2372 and the dispersion of the pseudo-random permutation
is 0.8137. Since most of our fndings indicate a correspondence between high dispersion and
better turbo code performance, the second permutation should perform better. Therefore,
the goal would be to use an algebraic interleaver that yields a permutation with a higher
dispersion, which graphically translates to a plot that lacks a clearly defned pattern. Looking

33

at the plot of the permutation created using x 7! x11 with dispersion 0.8139 below, one can
notice a much more random-looking pattern:

Visually, one can tell that in this particular feld, the permutation created by x 7! x11 has
a higher dispersion than that created by x 7! x2 . The actual dispersion of the permutation
created by x 7! x11 is .8139. One could conclude then, without necessarily running these
permutations through the simulator, that using x 7! x11 should produce overall lower bit
error rates than using x 7! x2 .

11 Suggestions For Future Research

Some suggestions for future research include:

(i) Permutations with longer block lengths) should be studied. This would be useful for
real world applications of turbo codes.

(ii) Are monomials with di�erent integer coeÿcients more or less e �ective than monomi-
als with coeÿcients of one? Do they provide better/a greater variety of spread and
dispersion values, as opposed to those with coeÿcients of one?

(iii) How do polynomial permutations within a feld perform? Will they give a greater
variety of spreads and dispersions to experiment with?

(iv) More examination of the e� ects of particular monomial orderings on performance
should be done. Is there one particular monomial ordering that is ideal for all permu-
tations?

(v) What is the average dispersion and standard deviation for all permutations of a given
block length, and what implications may this have for turbo codes? Does this provide
insight into why turbo codes perform as well as they do?

34

12 Conclusion

In our research, we have found that, for the most part, a higher dispersion for a permutation
seems to indicate a low bit error rate. In most cases, when two permutations with con-
siderably di�erent dispersions are simulated and their respective bit error rates compared,
the one with higher dispersion tends to have a lower bit error rate. Likewise, permutations
with similar dispersions perform similarly with similar bit error rates. We have also found
that by using monomial orderings, we can sometimes improve upon a given permutation, as
properties such as dispersion can be altered (improved) when a di�erent monomial order-
ing is applied. For algebraic monomial permutations, we found that often when the spread
increases, the dispersion decreases. In most felds we tested, this decrease in dispersion re-
sulted in a higher bit error rate for permutations with the higher spreads. For semi-random
permutations, however, the dispersion tends to be around .81, regardless of spread.

13 Acknowledgements

This research was conducted at the Applied Mathematical Sciences Summer Institute (AMSSI)
and has been partially supported by grants given by the Department of Defense (through its
ASSURE program), the National Science Foundation (DMS-0453602), and the National Se-
curity Agency (MSPF-06IC-022). Substantial fnancial and moral support was also provided
by Don Straney, Dean of the College of Science at California State Polytechnic University,
Pomona. Additional fnancial and moral support was provided by the Department of Math-
ematics at Loyola Marymount University and the Department of Mathematics & Statistics
at California State Polytechnic University, Pomona. This project would not have been pos-
sible without the help of Dr. Edward C. Mosteig and Laura Smith; a special thanks to
them and all the AMSSI faculty. The authors are solely responsible for the views and opin-
ions expressed in this research; it does not necessarily refect the ideas and/or opinions of
the funding agencies and/or Loyola Marymount University or California State Polytechnic
University, Pomona.

35

References

[Be] Berrou, Claude, Near Optimum Error Correcting Coding and Decoding: Turbo-Codes,
IEEE Transactions on Communications. 44 (1996), 1261-1271.

[CoRu] Corrada-Bravo, Carlos J., Rubio, Ivelisse M., Algebraic Construction of Interleavers
Using Permutation Monomials, IEEE Communications Society. 2 (2004), 911-915.

[CoRu(2)] Corrada-Bravo, Carlos J., Rubio, Ivelisse M., Cyclic Decomposition of Permuta-
tions of Finite Fields Obtained Using Monomials, Springer Berlin/Heidelberg. 2948 2004,
254-261.

[CoRu(3)] Corrada-Bravo, Carlos J., Rubio, Ivelisse M., Deterministic Interleavers for Turbo
Codes with Random-like Performance and Simple Implementation, Proc, 3rd Int. Symp.
Turbo Codes, Brest, France, Sep. 2003.

[Cr] Cruz, Louis J., Permutations that Decompose in Cycles of Length 2 and are Fiven by
Monomials, Proceedings of The National Conference On Undergraduate Research (NCUR).
(2006), 1-8.

[DoDi] Dolinar, S., Divsalar, D., Weight Distributions for Turbo Codes Using Random and
Nonrandom Permutations, TDA Progress Report, 42-122, JPL Aug. 1995, 56-65.

[Fo] Forney, Jr., G. David, Convolutional Codes I: Algebraic Structure, IEEE Transactions
on Information Theory. 16 (1970), no. 6, 720-738.

[Ga] Garrett, Paul, The Mathematics of Coding Theory, Pearson Prentice Hall. (2004).

[HeWi] Heegard, C., Wicker, Stephen, B., Turbo Coding, Kluwer Academic Publishing.
(1999).

[JoMo] Jones, Alaina, Moreno, Benjamin, Smith, Laura, Viteri, Andrea, Yao, Kouadio
David, Mosteig, Edward, Exploring Interleavers in Turbo Coding, AMSSI 2005 Technical
Report. (2005).

[LiMu(1)] Lidl, Rudolf, Mullen, Gary J., When Does a Polynomial over a Finite Field Per-
mute the Elements of the Field?, American Mathematical Monthly. 95 (1988), no. 4,
243-246.

[LiMu(2)] Lidl, Rudolf, Mullen, Gary J., When Does a Polynomial over a Finite Field Per-
mute the Elements of the Field?, II, American Mathematical Monthly. 100 (1993), no. 1,
71-74.

[LiMo] Little, John B., Mosteig, Edward, Error Control Codes from Algebra and Geometry,
Notes for SACNAS Minicourse. Sept., 25 2004.

[LuPe] Luis, Y., B., Perez, L., O., Permutations of Zq Constructed Using Several Monomial
Orderings, Proceedings of The National Conference On Undergraduate Research (NCUR).
(2005) 1-8.

36

[Pr] Pretzel, Oliver, Error-Correcting Codes and Finite Fields, Clarendon Press. (1992).

[Ro] Roman, Steven, Introduction to Coding and Information Theory, Springer-Verlag, New
York. (2005).

[Ta] Takeshita, Oscar Y., Permutation Polynomial Interleavers: An Algebraic-Geometric
Perspective, avaliable at: http://arxiv.org/abs/cs/0601948 (2006).

[va] van Lint, J.H., Introduction to Coding Theory, Springer-Verlag, New York. (1999).

[Wu] Wu, Yufei., Turbo Code Simulator., Nov 1998., MPRG lab, Virginia Tech.
http://www.ee.vt.edu/˘yufei

37

http://www.ee.vt.edu/�yufei
http://arxiv.org/abs/cs/0601948

A Appendix A

This appendix is composed of much of the data we obtained but did not include in our
results section. This is to serve as further evidence for our conclusions and conjectures.

A.1 Lexicographic Ordering

A.1.1 Bit Error Rates in F26 Using Lex Ordering

A.1.2 Bit Error Rates in F27 Using Lex Ordering

38

39

A.1.3 Bit Error Rates in F28 Using Lex Ordering

40

A.1.4 Bit Error Rates in F34 Using Lex Ordering

41

A.1.5 Bit Error Rates in F35 Using Lex Ordering

42

A.1.6 Bit Error Rates in F53 Using Lex Ordering

A.2 Graded Lexicographic Ordering

A.2.1 Bit Error Rates in F26 Using Graded Lex Ordering

43

A.2.2 Bit Error Rates in F27 Using Graded Lex Ordering

44

A.2.3 Bit Error Rates in F28 Using Graded Lex Ordering

45

A.2.4 Bit Error Rates in F34 Using Graded Lex Ordering

46

A.2.5 Bit Error Rates in F53 Using Graded Lex Ordering

47

A.3 Graded Reverse Lexicographic Ordering

A.3.1 Bit Error Rates in F26 Using Graded Reverse Lex Ordering

48

A.3.2 Bit Error Rates in F27 Using Graded Reverse Lex Ordering

49

50

A.3.3 Bit Error Rates in F28 Using Graded Reverse Lex Ordering

51

A.3.4 Bit Error Rates in F34 Using Graded Reverse Lex Ordering

52

A.3.5 Bit Error Rates in F35 Using Graded Reverse Lex Ordering

A.3.6 Bit Error Rates in F53 Using Graded Reverse Lex Ordering

B Appendix B

B.1 A Note on Matlab Programs for this Project

These Matlab programs were all created during AMSSI 2006. Some of the programs depend
on the Communications Toolbox developed for Matlab. Thus, these will not work on a nor-
mal version of Matlab. The programs that will not work without the special toolbox will be
noted in their beginning comments.

53

� � � �

In all cases, the input of a permutation is given to a program as a vector of the images
of the permutation. For example, the permutation � �

ˇ =
0
4

1
2

2
5

3
0

4
3

5
1

would be passed to the program as the vector [4 2 5 0 3 1] (or, equivalently, [4,2,5,0,3,1]).

2 + 5Additionally, polynomials such as 1+ or 4+ +7 3 would be passed as [1 0 1 0 0 1]
and [4 1 0 7], respectively, with the numbers in the vector representing the coeÿcients on
the powers of the polynomial variable, beginning with the variable to the 0th power as the
furthest left entry, and moving up by one power for each entry to the right. Though the pro-
grams here are written specifcally for monomials like xi , they can be fairly easily modifed
to accept polynomials with integer coeÿcients as the permutation polynomial. Some hints
for this are given in the programs likely to be modifed.

In addition to the titles of each program, it is important to read the frst few lines of the
program to examine its inputs and outputs. This will give a greater understanding of the
nature of the program.

B.2 Programs Examining Properties of Permutations

B.2.1 Program to Determine Spread

This program takes a permutation as input and outputs the value of the spread.

function out=spread(vect)
%out=spread(vect)
% Calculates the spread of a permutation ’vect’
% Outputs the numeric value of the spread

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

out=1; % sets up default spread value
q=length(vect); % initialize variables
s=2;
flag=0;
while (s<=(sqrt(q/2)+2) && (flag~=1)) % sets conditions for ending loop

j=2;
% starts looping j upwards until it reaches the
% end of the vector or we find where s fails
while ((j<=q) && (flag~=1))

i=(j-(s-1)); % sets up i based on the value of s
if (i<=0) % moves i back to 1 if above line sends it 0 or less

i=1;

54

end
while ((flag~=1) && (i<j)) % starts looping i upwards until i<j s fails

if abs(vect(j)-vect(i)) < s % failure condition for s
flag=1;
out=s-1;

end
i=i+1;
end

j=j+1;
end
if flag~=1 % if flag was not tipped off, then all values of i,j for the

out=s; % specific s worked, so s is a new candidate for spread
end
s=s+1;

end

B.2.2 Program to Determine Spread Factors

function mini=permdist(perm)
%mini=permdist(perm)
% Calculates the spread factors of the permutation ’perm’
% Outputs the decimal value of the spread factor of ’perm’

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

n=length(perm);
mini=2*n; % set ’mini’ very large so it’s replaced in first loop
for i=1:n-1;

for j=i+1:n; % adds the ’distance’ between i and j, and
%% the ’distance between perm(i) and perm(j)

dist=min(mod(i-j,n),mod(j-i,n))+
min(mod(perm(i)-perm(j),n),mod(perm(j)-perm(i),n));

mini=min(dist,mini); % picks smallest between old min and new value
end

end

B.2.3 Program to Plot Spreading Factors

This program uses the above program to determine spreading factors, and then plots those
spreading factors. This also plots a yellow dotted y = x line for ease in fnding the s-
parameter. The program can also plot a line showing the calculated spread value for com-
parison with the s-parameter, if the correct argument is passed.

function [count,s]=plotsprfactor(permutation,plotspread)
%[count,s]=plotsprfactor(permutation,plotspread)

55

% Plots the spreading factors of a permutation and, if desired,
% plots the calculated spread as a vertical line
% If plotspread=1, plots the spread line; does not plot spread line
% if plotspread=0
% Outputs the number of spreading factors (and only those where s,t>1)
% and the value of the spread

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

newplot
[input,count]=sprfactor(permutation);
a=input(1,:);
b=input(2,:);
plot(a,b,’xr’)
q=length(permutation);
title(’Spreading Factor Plot,with Line Representing Spread Value’);
xlabel(’Values of S’);
ylabel(’Values of T’);
axis([0,q,0,q]);
hold on
d=0:q;
s=spread(permutation);
if plotspread==1

c=s*ones(1,q+1);
plot(c,d)

end
plot(d,d,’y:’) % plots y=x line
hold off

B.2.4 Program to Determine Spreading Factors

function [output,count]=sprfactor(perm)
%[output,count]=sprfactor(perm)
% Calculates the spreading factors of the permutation ’perm’
% Outputs a matrix of s values matched up with t values that work:
% [s1 s2 ... ; t1 t2 ...]
% and the number of spreading factors (where s,t>1)

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

q=length(perm); % initializing variables
output=[];
count=0;

56

for s=1:q; % sets up values of s and t
for t=1:q;

flag=0; % more initializing variables
add=1; % trigger variable to add the (s,t) pair to the output variable
j=2;
while (j<=q) && (flag~=1) % j and i loops just like spread

i=(j-(s-1));
if (i<=0)

i=1;
end
while ((flag~=1) && (i<j))

if abs(perm(j)-perm(i)) < t % failure condition for t
add=0;
flag=1;

end
i=i+1;
end

j=j+1;
end
if add==1 % adds a successful (s,t) pair to the output vector

output=[output [s;t]];
count=count+1; % increases count since another pair is added

end
end

end plot(output(1,:),output(2,:),’+’)
count=count-2*q+1; % removes the pairs where s,t=1; since s,t range from 1 to q

% there are q-1 places where s=1, q-1 places where t=1,
% and 1 place where s=t=1; thus, s,t=1 in 2(q-1)+1
% places, or 2q-1 places

B.2.5 Program to Determine Dispersion

function out=dispersion(vect)
%out=dispersion(vect)
% Calculates the dispersion of a parameter ’vect’
% Outputs the decimal value of the dispersion of ’vect’

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

q=length(vect); % setup variables
M=[]; % setup variables
k=1; % flag for the first run
for j=2:q % j goes from the second slot to the end of the vector

for i=1:j-1 % i<j hardcoded

57

if (k==1) % M has no vectors, no reason to check the "other" pairs
M=[j-i;vect(j)-vect(i)];
k=2; % M now has values, must go to next section from now on

else
addin=1; % sets up flag to add pair into matrix
for l=1:length(M)-1 % checks matrix for the current ordered pair

if ((j-i)==M(1,l)) && ((vect(j)-vect(i))==M(2,l))
addin=0; % if the pair is found, must not add the pair in

end
end
if (addin==1) % pair was not found by code above, so it’s added

V=[j-i; vect(j)-vect(i)];
M=[M V];

end
end

end
end
[m,n]=size(M); % gets size of the matrix; want # columns
out=(2*n)/(q*(q-1)); % calculates the dispersion value

B.2.6 Optimized Program to Determine Dispersion

This is a much-improved version of the dispersion program that will run quite quickly com-
pared with the last program.

function out=fastdisp(vect)
%out=fastdisp(vect)
% Calculates the dispersion of a parameter ’vect’
% Outputs the decimal value of the dispersion of ’vect’

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

q=length(vect);
M=zeros(q-1,2*q-1); % setup variables, (q-1)x(2q-1) matrix of zeros
for j=2:q % j from the second slot to the end of the vector

for i=1:j-1 % since i<j, start i at 1 then go to j-1

% changes component of matrix from 0 to 1 if
% calculated dispersion pair corresponding to the coordinates appears

M(j-i, vect(j)-vect(i)+q)=1 ;
end

end

%next line takes sum of matrix m, then the sum of the transpose,

58

% which gives cardinality of D, then plugs into dispersion formula
out=(2*sum(sum(M)’))/(q*(q-1));

B.2.7 Program to Determine Cyclic Decomposition Cycles

function output=decomposition(vect)
%output=decomposition(vect)
% Calculates the cyclic decomposition of the input permutation ’vect’
% Outputs a matrix containing the n-cycles and how many times each appears
% ie, 1 3 6
% 4 1 2
% represents 4 1-cycles, 1 3-cycle, and 2 6-cycles

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

tester=sort(vect); % the next three lines make sure program operates correctly
offset=tester(1); % only works w/perms that contain 0; thus, sorts input vector,
vect=vect-offset; % looks first (now smallest) entry, offsets the vector by that

q=length(vect); % next five lines set up the intial values of variables
counter=[];
used=[];
index=1;
cycle=[];
while(length(used)<q)

k=index-1; % accounts for the off-by-one
while(k~=vect(index)) % cycles through the perm until back to index value

cycle=[cycle vect(index)];
used=[used vect(index)];
index=vect(index)+1;

end
cycle=[cycle vect(index)]; % since cycle added pi(index) as first element,

%% we must specially add in the original index
used=[used vect(index)];
counter=[counter length(cycle)];
used=sort(used); % preps for comparison below
i=0;

while (i<length(used)) && (i==used(i+1)) % find the first index not used
i=i+1;

end
index=i+1;

cycle=[]; % resets the cycle to empty matrix to begin loop again
end
counter=sort(counter); % sorts to expedite creation of the output vector

59

output=[];
for k=1:length(counter) % following loop goes adds element to counter if unique

marker=0; % or increases tally if element is not unique
l=1;
[m,n]=size(output);
while (marker==0) && (l<=n)

if counter(k)==output(1,l)
variable=output(2,l);
output(2,l)=(output(2,l)+1);
marker=1;

end
l=l+1;

end
if marker==0

output=[output [counter(k);1]];
end

end

B.3 Field Arithmetic Programs

B.3.1 Program to Evaluate Addition in a Field

This program to add in a feld Fpn uses the function gfadd, which is available only in the
Matlab Communications Toolbox.

function output=gfaddition(alpha,num,field)
% output=gfaddition(alpha,num,field)
% Performs additions of variables in a Galois Field called ’field’
% adding ’alpha’ to itself ’num’ times
% One example is 2(alpha)^3; num=2 in this case

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

output=alpha; % sets up default alpha value
% (won’t enter loop if num=1)

for i=1:num-1 % loops up to the correct number of additions
output=gfadd(output,alpha,field);

end

B.3.2 Program to Evaluate Exponents in a Field

This program to evaluate exponents in a feld Fpn uses the function gfmul, which is available
only in the Matlab Communications Toolbox.

function

60

powr=gfexpo(num,i,field)
%powr=gfexpo(num,i,field)
% Evaluates exponents in a Galois Field, taking a field element num^i by
% multiplying it by itself i times
% ie, (alpha)^6 --> num=alpha, i=6

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

if i==0 % hard codes the basic default case
powr=0;

else
powr=num;
for j=1:i-1 % loop multiplies num times itself i-1 times

powr=gfmul(powr,num,field);
end

end

B.3.3 Program to Evaluate Polynomials in a Field

This program to calculate values plugged into a polynomial in a feld Fpn uses the functions
gfadd, gfexpo, and gfaddition, which are available only in the Matlab Communications
Toolbox.

function output=gfpoly(num,vect,field)
%output=gfpoly(num,vect,field)
% Program to evaluate plugging variables like (alpha)^6 into polys like 1+x+x^2
% In the example, num=(alpha)^6 and vect=[1 1 1] (which represents 1+x+x^2)
% Outputs the value of the evaluated polynomial

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

output=-Inf; % default output; evaluates to 0 in any field
for j=1:length(vect) % sets up loop to step through every part of vector

exponen=gfexpo(num,j-1,field); % calls exponent to evaluate num to power
if vect(j)==0 % default value if any element of the vector is 0

added=-Inf;
else

% adds up the exponentiated alphas to deal with coeffiecients
added=gfaddition(exponen,vect(j),field);

end
output=gfadd(output,added,field); % adds new (alpha)^x value to previous add’ns

end

61

B.4 Random Necessary Programs

B.4.1 Program to Determine Base Representations

This program takes in a decimal number and a prime power pn , and calculates the number’s
representation in the new base.

function vect=baserep(num,p,n)
%vect=baserep(num,p,n)
% Calculates the base p representation of a decimal number ’num’ up to
% n digits
% Outputs the base representation of the number as a vector

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

digs=n; % calculates # of digits required in the end number
vect=[];
for j=1:digs % loops through every digit

temp=mod(num,p); % evaluate mod of number, then
vect=[vect temp]; % add to vector, then
num=(num-temp)/p; % subtract the mod off the original and loop back

end

B.4.2 Program to Generate Random Integer

There is a built-in program, randint, which is available only in the Matlab Communications
Toolbox. In order to use this program on other computers without the Toolbox, we had to
copy the code to a separately named Matlab program fle.

B.5 Sorting Programs

B.5.1 Program to Sort a Set of Vectors

This program requires that the vectors be stored as columns of a matrix. Example: to sort 2 3
1 8 0

[1 2 3], [8 3 2], and [0 9 3], they should be passed to the program as M 4= 2 3 9 5 .
3 2 3

function data=selectionsort(M,data,first)
%data=selectionsort(M,data,first)
% Sorting algorithm based on swapping the largest value into the last slot,
% then moving the "last" slot up by one and repeating
% M ~ Monomial ordering;
% data ~ vector of items that need sorting;
% first ~ the first index where sorting should begin

62

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

[m,n]=size(data); % gets length of data to determine length of sorting
for i=n-1:-1:1 % begins at the latest index moving backwards

big=first; % starts the selection of big at the first element
%% then loops upward until the largest element is found

marker=0;
for j=first+1:first+i

if (matbigvects(M,data(:,big),data(:,j))==2) % uses ordering program
big=j;
marker=1;

end
end

% the next loop swaps biggest element to last slot, then to the next left position
if marker==1

temp = data(:,first+i);
data(:,first+i)=data(:,big);
data(:,big)=temp;

end
end

B.5.2 Program to Sort Two Vectors According to a Monomial Ordering

function greatvect=matbigvects(M,a,b)
%greatvect=matbigvect(M,a,b)
% Calculates the monomial ordering of vectors ’a’ and ’b’, both of length n,
% based on the inputted n by n matrix ’M’ of nonnegative real values
% Output: 0 if a=b or if M=0; 1 if a>b; 2 if a<b

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

i=1; % initial values
flag=4;
funvect=M*(b-a); % sets up evaluation vector
if M*a==M*b % outputs zero if a and b are equal, or if M is all zeros

greatvect=0;
return;

else
while (flag==4) && (i<=length(M)) % finds first spot where value not 0

% by definition of this ordering, if the first spot of difference
%% is positive, a<b and the program outputs 2

if funvect(i)>0
greatvect=2;

63

flag=7;
% by definition of this ordering, if the first spot of difference
%% is negative, a>b and the program outputs 2

elseif funvect(i)<0
greatvect=1;
flag=5;

end
i=i+1; % if the vectors don’t differ at i, loops to the next slot

end
end

B.5.3 Program to Output a Graded Lexicographic Matrix Representation

function matrix=grlex(size)
%matrix=grlex(size)
% Creates a ’size’ by ’size’ matrix that will represent
% a graded lexicographic ordering when used
% in the vector ordering program
% Outputs a ’size’ by ’size’ matrix

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

% first row is all 1s;
% bottom part is a lex matrix with the last row cut off
matrix=[ones(1,size); eye(size-1,size)];

B.5.4 Program to Output a Graded Reverse Lexicographic Matrix Represen-
tation

function matrix=grevlex(size)
%matrix=grevlex(size)
% Creates a ’size’ by ’size’ matrix that will represent
% a graded reverse lexicographic ordering when used
% in the vector ordering program
% Outputs a ’size’ by ’size’ matrix

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

matrix=[ones(1,size)]; % Top row of grevlex matrix
temp=eye(size-1,size); % Sets up bottom part of grevlex
temp=abs(temp-1); % Switches zeros and ones
i=1;
j=size;

64

% Flips columns of the temp to reverse direction of the zero diagonal
while (i<j)

temp2=temp(:,i);
temp(:,i)=temp(:,j);
temp(:,j)=temp2;
i=i+1;
j=j-1;

end

matrix=[matrix;temp]; % Combines upper and lower parts

B.6 Permutation Calculation Programs

B.6.1 Program to Calculate a Permutation in a Field, Using a Specifed Order-
ing and Permutation Polynomial

This program uses a number of programs that depend on the Matlab Communications Tool-
box.

function output=monomialordermap(M,p,n,j)
%output=monomialordermap(M,p,n,j)
% Calculates the resulting permutation in Z_p^n using monomial ordering ’M’,
% in field of size p^n, and the center permuting polynomial x^j
% Outputs the resulting permutation in vector form

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

%% Goes from Z(p^n) to (Zp)^n, sorts according to monomial order M
%% (ex: from integers to polynomials sorted by lex)

vect=num2vect(M,p,n);
conversion=vect; % stores conversion matrix for later

%% Defines the field we are working in

field=fielddefine(p,n);

%% Runs the polynomials (in terms of alpha) through a permutation, which
%% can itself be a polynomial
[c,d]=size(vect);
output=[];
for i=1:d

65

[tp,expform]=gftuple(vect(:,i)’ ,n,p); % converts from (Zp)^n to F(p^n)
output=[output gfexpo(expform,j,field)];

end
vect=output;

%% Converts the output in F(p^n) back into (Zp)^n
output=[];
for i=1:d

[tp,expform]=gftuple(vect(i),n,p); % converts from F(p^n) to (Zp)^n
output=[output;tp];

end
vect=output’;

%% Converts the vector into Z(p^n)
output=vect2num(conversion, vect);

For working with polynomials that not are simple monomials the following changes can
be made:

(i) The frst few lines of the program can be replaced with:

function output=monomialordermap(M,p,n,permutation)
%output=monomialordermap(M,p,n,permutation)
% Calculates the resulting permutation in Z_p^n using monomial ordering ’M’,
% in field of size p^n, and the center permuting polynomial ’permutation’
% with integer coefficients

(ii) In the middle of the program, the lines where the polynomials are run through the
permutation, the lines can be replaced with:

for i=1:d
[tp,expform]=gftuple(vect(:,i)’,n,p); % converts from (Zp)^n to F(p^n)
output=[output gfpoly(expform,permutation,field)];

end

(Note that this modifed version requires modifcations of the programs on which monomi-
alordermap depends to accept arguments of polynomials, described as vectors, instead of
just an i-value.)

B.6.2 Program to Take the Elements of Zpn Into (Zp)
n , and Order Them by a

Monomial Ordering

function vect=num2vect(M,p,n)

66

% vect=num2vect(M,p,n)
% Creates a list of ordered vectors in the specified base p^n
% using the elements of Z(p^n), converting them to (Zp)^n,
% then sorting the resulting elements of (Zp)^n
% Outputs a sorted vector of elements of (Zp)^n

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

vect=[];
for i=0:(p^n)-1 % adds all numbers from 0 to base-1 to a vector

vect=[vect;baserep(i,p,n)];
end
vect=vect’; % transposes the vector so it sorts correctly
vect=selectionsort(M,vect,1);

B.6.3 Program to Take the Elements of (Zp)
n Back Into Zpn Using the a Specifed

Conversion Ordering

function permvect=vect2num(Q,H)
% permvect=vect2num(Q,H)
% Takes in the conversion table from the num2vect and list of outputted
% vectors from the permutation
% Q ~ conversion factor matrix;
% H ~ result of the previous step
% Outputs the converted integers

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

[m,n]=size(H);
permvect=zeros(1,n); % sets up vector that ends up outputting integers in order
for i=1:n % loops through the permutation vectors

for j=1 % loops until conversion table and perm vectors match
while ~isequal(H(:,i),Q(:,j))

j=j+1;
end

end
permvect(i)=j-1; % adds integer value to specified spot in output vector

end

B.6.4 Program to Defne the Working Field

This program to calculate a feld Fpn uses the function gftuple, which is available only in
the Matlab Communications Toolbox.

67

function field=fielddefine(p,n)
%field=fielddefine(p,n)
% Method for constructing a field of size p^n and outputting the
% proper variable, ’field’, for future use

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

field = gftuple([-1:p^n-2]’,n,p); % Constructs list of elements.

B.7 Permutation Creation Programs

B.7.1 Program to Create Permutations in a Field Fpn using a Monomial Order-
ing and to Calculate Measurements of Each Permutation

This program depends on a program that utilizes elements in the Matlab Communications
Toolbox.

function
[permutation,isperm,sprd,dispers,cyclic,sprdfactor]=allofit(M,p,n,i)
%[permutation,isperm,sprd,dispers,cyclic]=allofit(M,p,n,poly)
% Determines if a polynomial is a permutation, and returns the spread,
% dispersion, and cyclic decomposition if the polynomial is a permutation.
% Where M=Matrix describing monomial order, p=base, n=exponent (ie, p^n),
% and poly=polynomial to be used
% Outputs the permutation; isperm=1 if poly is a permutation, 0 if not;
% spread; dispersion; and cyclic decomposition

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

permutation=monomialordermap(M,p,n,i); % permutation creation
isperm=testperm(permutation,p,n); % tests if a permutation
if (isperm==1) % calcs and stores measures of a perm

sprd=spread(permutation);
dispers=dispersion(permutation);
cyclic=decomposition(permutation);
sprdfactor=permdist(permutation);

else
sprd=‘error - your permutation sucks’;
dispers=‘error - your permutation sucks a lot’;
cyclic=‘error - why oh why did you pick that permutation’;
sprdfactor=‘error - even the spread factors hate your permutation!’;

end

68

B.7.2 Program to Test if a Candidate is a Permutation

function output=testperm(perm,p,n)
%output=testperm(perm,p,n)
% Tests a candidate to see if it is a permutation
% Outputs 1 if the candidate is a permutation, 0 if it is not

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

output=1;
flag=0;
perm=sort(perm);
i=0;
% after sorting, the vector is in ascending order starting at zero,
% so the loop starts i at zero and checks to make sure that the ith
% slot of the sorted permutation equals i
while (flag==0) && (i<p^n)

if i~=perm(i+1)
output=0;
flag=1;

end
i=i+1;

end

B.8 Permutation Determination, Storage, and Retrieval Pro-
grams

B.8.1 Program to Calculate Measurements for Permutations in a Field

function allinone(M,p,n,filename)
%allinone(M,p,n,print)
% Determines whether each of the polynomials making up the field are a
% permutation, and prints out the spread, dispersion, and cyclic
% decomposition of the polynomials.
% M ~ Matrix determining monomial ordering (dimensions n by n)
% p ~ prime number
% n ~ power of prime number (p^n makes up the order of the field, ie F_p^n)
% print ~ type 1 to print out poly, sprd, disp, and decomp for each
% polynomial even if not a permutation, type 0 to just print the
% information for polynomials that are permutations

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

69

perms=[];
ivalues=[];
ordering=M;
spreads=[];
dispersions=[];
sprdfactors=[];
for i=0:(p^n-1) % loop to set up, calc all the p^n polys w/integer coeff

if (gcd(i,(p^n-1))==1)
% calls the allofit function to check whether each polynomial generates a
% permutation; if it does, the next lines output the relevant values

[per,isperm,sprd,disp,decomp,sprdfactor]=allofit(M,p,n,i);
i
per;
sprd;
disp;
decomp;
sprdfactor;

perms=[perms;per];
ivalues=[ivalues;i];
spreads=[spreads; sprd];
dispersions=[dispersions; disp];
sprdfactors=[sprdfactors; sprdfactor];

end
end

% setup to store variables
% perms must have 1 added to accomodate turbo_simulator

polys=ivalues;
perms=perms+1;
save(filename,’polys’,’perms’,’ordering’,’spreads’,’dispersions’,’sprdfactors’)

B.8.2 Program to Read Measurements from a Field File

function [po,or,sp,di,sf]=readallinonemeasures(filename)
%[po,or,sp,di,sf]=readallinonemeasures(filename)
% Reads the stored polynomials, ordering, spreads, dispersions, and spread
% factors from a specified field file.
% Outputs five variables to that contain the polynomials, the ordering, the
% spreads, the dispersions, and the spread factors in that order.

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

load(filename,’polys’,’ordering’,’spreads’,’dispersions’,’sprdfactors’)
po=polys; % the next five lines set the return variables

70

or=ordering;
sp=spreads;
di=dispersions;
sf=sprdfactors;

B.8.3 Program to Read Permutations from a Field File

function [po,pe]=readallinoneperm(filename)
%[po,pe]=readallinoneperm(filename)
% Reads the stored polynomials and permutations from a specified field file.
% Outputs two variables to that contain the polynomials and the
% permutations, in that order.

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

load(filename,’perms’,’polys’)
pe=perms;
po=polys;

B.9 Interleaver Simulation Programs

B.9.1 Program to Run Multiple Simulations on a Field File

function simfromfile(filename,nums)
%simfromfile(filename,nums)
% Runs specified number of simulations, ’nums’, on the field file.
% Saves simulation data for each permutation to an extended version of the
% original name; ie, for lex_f2_2, one might be saved as lex_f2_2_2.

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

load(filename,’perms’) m=length(nums);
a=readallinonemeasures(filename)’ % gets all i values
for i=1:m

% j loop finds index where each i value is located
for j=1:length(a)

if nums(i)==a(j)
use=j;
nums(i);

end
end

% creates extended filename, and runs the specified simulation
filei=[filename,’_’,num2str(nums(i))];

71

turbo_simulator(perms(use,:),filei);
end

B.9.2 Program to Read Bit Error Rates from a Field File

This program can only be run after successful simulation of the permutations. It also requires
that all the fles associated with the feld fle be in the same directory as the original feld
fle. Example: After simulating lex f2 2, you may have the associated feld fles lex f2 2 1
and lex f2 2 2. The latter fles must be in the same directory as the original feld fle for this
program to work.

function output=readber(filename,ivect)
%output=readber(filename,ivect)
% Reads the specified Bit Error Rates from a field file.
% filename ~ name of field file
% ivect ~ vector listing requested i-values
% Outputs requested Bit Error Rates

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

q=length(ivect);
output=zeros(q,5);
for i=1:q % loops through the i values and stores the BERs for output

filei=[filename,’_’,num2str(ivect(i))];
load(filei,’ber’);
output(i,:)=ber(:,length(ber))’;

end

B.9.3 Program to Graph Specifed Bit Error Rates

function ber_graph(filename,ivect,len)
%ber_graph(filename,ivect,len)
% Graphs the specified BERs for each signal to noise ratio
% filename ~ filename to get data from
% ivect ~ specifies which values of x^i to plot
% len ~ hack to make legend come out right; this is the number
% of digits of the highest i-value

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

newplot
q=length(ivect);
hold on % needed to graph multiple graphs; gets this done early on
legi=[];

72

color=[’y’ ’m’ ’c’ ’r’ ’g’ ’k’]; % vectors that set up matlab line styles
line=[’-’,’:’,’-.’,’--’];
style=[’.’ ’o’ ’x’ ’+’ ’s’ ’d’ ’v’ ’^’ ’p’ ’h’ ’<’ ’>’];
for i=1:q

filei=[filename,’_’,num2str(ivect(i))]; % ith filename created
load(filei,’EbN0db’,’ber’) % loads BERs from the ith file
[m,n]=size(ber);
EbNoveci=EbN0db; % vector of signal to noise ratios
BERveci=ber(:,n);

% the randint program is in the Matlab Communications Toolbox, so one would
% have to create his or her own version to run the next three lines

l = randint(1,1,[1,length(line)]); % picks random style
s = randint(1,1,[1,length(style)]);
c = randint(1,1,[1,length(color)]);
plotsym= [style(s) line(l) color(c)]; % random plotstyle for this curve

semilogy(EbNoveci,BERveci,plotsym); % actually plots curve

tempvect=num2str(ivect(i));
p=length(tempvect);
if p~=len % creates line in legend for each line graphed

for j=p:len-1
tempvect=[tempvect,’‘’]; % add in hack to make legend work

end
end
addin=strcat(’x->x^’,tempvect);
legi=[legi;addin];

end

% adds in graph axis labels, title, and legend
grid on;
title(’Performance of Turbo Codes Using Monomial Permutations’);
xlabel(’Signal to Noise Ratio (EbNo (dB))’);
ylabel(’Bit Error Rate (BER)’);
legend(legi,’Location’,’Southwest’);

hold off

B.10 Programs to Create and Examine Semi-Random Permuta-
tions

B.10.1 Program to Generate a Semi-Random Permutation

function perm=randomp(s,q)
%perm=randomp(s,q)

73

% input s and q, s=desired spread, q=field size

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

perm=zeros(1,q); % a 1xq zero matrix
available=ones(1,q); % available possibilities to choose from
pofflimits=zeros(1,q); % values off limits permanently
entry=randint(1,1,[1,q]); % picks a random number to insert into perm
perm(1)=entry; % randomly picks perms first entry without restrictions
for i=2:q

available(entry)=0; % changes indices of available matrix to 0
pofflimits(entry)=1; % changes pofflimits indices to 1
offlimits=pofflimits; % sets offlimits to pofflimites
max1=max(1,i-(s-1)); % next 2 lines pick range to test spread
w=perm(max1:i-1);

% enter things into offlimits by test spread, dist from other things
for j=1:length(w)

max2=max(1,w(j)-(s-1));
min1=min(q,w(j)+(s-1));
offlimits(max2:min1)=1;

end
available=ones(1,q)-offlimits; % subtract the ones from offlimits
v=find(available==1); % finds spaces in available equal to 1
if isempty(find(v)), break, end; % tests to see if there are availables
e=randint(1,1,[1,length(v)]); % picks randint between 1, length avaiables
entry=v(e); % makes entry the index of random integer
perm(i)=entry; % puts this into perm

end

B.10.2 Program to Keep Searching for a Semi-Random Permutation

function permy=reallyrandomp(s,q)
%permy=reallyrandomp(s,q)
% Runs really random p until it makes a real permutation
% Outputs an actual semi-random perm

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

flag=0;
while flag==0

permy=randomp(s,q);
if ~(permy(q)==0)

74

flag=1;
end

end

B.10.3 Program to Simulate Random Permutation

function storereallyrandomp(s,q,filename)
%storereallyrandomp(s,q,filename)
% Runs turbo_simulator with generated semi-random permutation
% Stores information in specified filename
% - use readberrandom to retrieve information

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

perm=reallyrandomp(s,q)
turbo_simulator(perm,filename);

B.10.4 Program to Retrieve Information from a Simulated Permutation

function readberrandom(filename)
%output=readberrandom(filename,ivect)
% Reads the specified Bit Error Rates from a field file
% created by a random permutation.
% filename ~ name of field file
% Outputs requested Bit Error Rates

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

output=zeros(1,5); % preallocating output vector
load(filename,’ber’,’alpha’); % load bit error rates
[m,n]=size(ber); % get size of BER matrix
output(1,:)=ber(:,n)’; % set up correct outputs

% lines print permutation, spread, dispersion, sprfactor to screen
perm=alpha
spr=spread(alpha)
disp=dispersion(alpha)
sprfact=permdist(alpha)
permber=output

B.10.5 Program to Examine Dispersions of Random Permutations

function d=randomdispersionloop(s,q,goes)
%d=randomdispersionloop(s,q,goes)

75

% Creates several permutations of a given spread and field size, then
% computes the dispersion.
% s=spread, q=field size, goes=# of permutations

% AMSSI 2006 - Mod 4 Armada
% Public Domain as long as above lines remain intact

d=zeros(1,goes); %initial dispersion matrix as zeros
for k=1:goes %runs specified amount of times

%calculates dispersions of perms generated, outputs as vector
d(k)=fastdisp(reallyrandomp(s,q));

end

76

