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Abstract 

Deterministic population models describe population sizes and their dynamics. 
However, random chance plays a large part in the growth of real-life populations. 
In this technical report, birth-death formulations for single and competing populations 
are developed. It is shown that these stochastic processes have expected values that 
agree with the corresponding deterministic models. A representation for the partial 
differential equation that a probability generating function of a birth-death process 
with polynomial transition rates is derived. This representation is in terms of Stirling 
numbers and is used to develop some of the properties of these processes. The analysis 
in this report uses both analytical methods and simulations. 
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1 Single Population Models 

1.1 The Pure Birth Process - A Motivating Example 

Consider the differential equation 
dN 
dt 

λN(t), 

where N(t) is the size of a population at time t and λ is the growth rate constant. For a 
growing population, we will assume λ > 0, for a declining population we assume λ < 0, see 
Figure 1. This deterministic model works with the aggregate population and assumes not 
simply that each individual may reproduce but that it actually does reproduce. For instance, 
if the average number of births per individual over some time period is 0.8, then this model 
gives 0.8 offspring to each individual. We understand this as an average over the entire 
population, but this averaging process eliminates the natural variance in the population. 
Our work will focus upon a method that will allow us to model these natural variations. 

0 0.5 1 1.5 2
0

100

200

300

400

500

Time

P
o
p
u
l
a
t
i
o
n

Birth Model
Death Model

= 

λ > 0 

λ = 0 

λ < 0 

Figure 1: Graphs of the population model dN = λN(t) for different growth rates λ.
dt 

We wish to consider the situation where an individual in our population has a chance 
of giving birth in a period of time. We assume that the probability of reproduction for one 
individual in a very short time interval of length Δt is proportional to Δt, that is 

P [one individual gives birth in Δt] = λΔt + o(Δt), 

where o(Δt) is “little o” notation. Note that 

o(Δt)
lim = 0. 

Δt→0 Δt 
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Using complements, we find 

P [ individual does not give birth in Δt] = 1 − λΔt + o(Δt). 

These probabilities are for each individual in the population; we need to know the prob-
ability of one birth’s occurring for the population as a whole. 

To do this, we will suppose that there were n = 2 individuals in the population. If we 
assume that births to each individual occur independently, then the probability of no births’ 
occurring during the time interval Δt is 

P [no births occur in Δt] = (1 − λΔt + o(Δt))2 . (1) 

Thus, expanding the right-hand side of (1), we obtain 

(1 − λΔt + o(Δt))2 = 1 − 2λΔt + λ2(Δt)2 + o(Δt). 

Since Δt is assumed small, (Δt)2 is even smaller, in fact, essentially negligible. Thus we 
assume that 

P [no births occur in Δt] = 1 − 2λΔt + o(Δt). (2) 

Hence, the probability of one birth occurring in Δt in a population of size n = 2 is 

P [one birth occurs in Δt] = 2λΔt + o(Δt). (3) 

A similar argument using the binomial theorem shows that in a population of size n, 

P [one birth occurs in Δt] = nλΔt + o(Δt). (4) 

We assume that the interval of time Δt is sufficiently small, so that at most one birth 
can occur with probability given by equation (4). 

Let X(t) be the number of individuals in the population at time t. Suppose that the 
population has n0 individuals initially. 

Then X(0) = n0, and we seek to determine 

Pn(t) = P [X(t) = n]. 

Here X(t) has possible values n0, n0 + 1, n0 + 2, . . . since we have assumed that no deaths 
occur in this population. 

We can represent our population as a state diagram. Each state represents the size of 
the population. The arcs between the states represent the chance that we move up one state 
during time 4t, with the probability of remaining in that state given by the complement. 

1 − λ4t 1 − λ24t 1 − λn4t¶³ ¶³ ¶³1 ¶³ 

? ? ? ?λ4t º· (n-1)λ4t -º·nλ4tº· º· - -
. . . . . . . . . 0 1 2 n

¹¸ ¹¸ ¹¸ ¹¸ 
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As we can see, the probability to increase the population from 1 to 2 is λ4t. From 2 to 
3 is 2λ4t and to increase from n to n + 1 is given by the chance of nλ4t. 

Transition 
1 → 2 λ4t 
2 → 3 2λ4t 
. . . . . . 
n → n + 1 nλ4t 

Probability 

We can summarize this by saying that a transition up has the probability of the birth 
rate times the population. There is no chance to drop in state (lose population) in our pure 
birth model. 

Transition Rate 
i → i + 1 λi 
i → i − 1 0 

We have chosen 4t to be so small that only one event can occur during time 4t. 
So 

P [one birth|N(t) = 1] ≈ λ4t, 

(5) 

and 

P [no births in(0, 4t)|N(t) = 1] = 1 − λ4t. 

Using this, we have that during a time interval 4t 

Pi(t + 4t) = λ(i − 1)Pi−1(t)4t + (1 − λi4t)Pi(t)) for i > N0 (6) 

with the initial state N0 having 

PN0 (t + 4t) = (1 − N04t)PN0 (t) (7) 

by rearranging (6) we obtain 

Pi(t + 4t) − Pi(t) = λ(i − 1)Pi−1(t)4t − λiPi(t)4t, (8) 

then dividing through by 4t we have 

Pi(t + 4t) − Pi(t) 
= λ(i − 1)Pi−1(t) − λiPi(t). 4t 

(9) 

Letting 4t approach zero by taking a limit we have 

Pi(t + 4t) − Pi(t)
P 0 i (t) = lim = lim [λ(i − 1)Pi−1(t) − λiPi(t)], 4t→0 4t 4t→0

(10) 
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provided the limit exists. We have obtained the forward Kolmogorov equations, (c.f. Karlin 
and Taylor, 136) 

Pi 
0(t) = λ(i − 1)Pi−1(t) − λiPi(t) for i > N0 (11) 

and 

PN 
0 

0 
(t) = −λN0PN0 (t). (12) 

1.2 Recursive solution 

The system of equations(11)and(12) can be solved recursively. Using the equation for PN 
0 

0 
(t) 

as 

P 0 N0 
(t) + λN0PN0 (t) = 0. 

We see that this is a first order differential equation which can be solved with the inte-
grating factor 

R 
λN0dt λN0t e = e . (13) 

Using this gives 

λN0tP 0 λN0tPN0e N0 
(t) + λN0e (t) = 0, 

so that integrating and solving for PN0 (t) gives 

−λN0tPN0 (t) = c1e . 

Given that initially we’re at population N0 at t = 0 then c1 = 1, so 

−λN0tPN0 (t) = e . (14) 

Fortunately for us this answer makes sense: the probability that we stay at the initial 
population decreases exponentially with time. Now let’s look at the probability for the next 
state and substitute in what we found in (14). 
Thus 

PN 
0 

0+1(t) = N0λPN0 (t) − (N0+1)λPN0+1(t), 

becomes 

PN 
0 

0+1(t) + (N0 + 1)λPN0+1(t) = N0λe−λN0t . 
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Again, we see that this is just a first order linear equation so that the integrating factor is 
(Go integrating factor!) 

R 
λ(N0+1)dt λ(N0+1)t e = e (15) 

Thus 

λ(N0+1)tP 0 λ(N0+1)tPN0+1(t) 
λ(N0+1)tN0λe−λN0t e N0+1(t) + λ(N0 + 1)e = e 

so that we have 

−λN0t −λ(N0+1)tPN0+1(t) = N0e + c2e . 

At t = 0 there is no chance that we’re at population N0+1 (asPN0 (0) = 1) so c2 = −N0 

This gives 

−λt).PN0+1(t) = N0e −λN0t(1 + e (16) 

Once PN0+1(t) is known, it is used to find PN0+2(t). 

−λt).PN 
0 

0+2(t) + (N0 + 2)λPN0+2(t) = (N0 + 1)λN0e −λN0t(1 − e (17) 

Equation (17) is again a first-order linear differential equation. If we multiply each side 
λ(n0+2)tof the equation by e , integrate, and use the initial condition that PN0+2(0) = 0, we 

obtain the solution 
(N0 + 1)N0 −N0λt(1 − e −λt)2PN0+2(t) = e . 

2 
We continue this procedure. The general formula, which may be checked by induction, is 

µ 
N − 1 

¶ 
−λt)n−N0PN (t) = e −N0λt(1 − e for n ≥ N0. (18)

N0 − 1 

The equation (45) is the probabilistic model for a pure birth process. It gives the prob-
ability distribution of the size of the population at time t. While the deterministic model 
gives a single number as the prediction for the population size at time t, the probabilistic 
model gives the relative likelihood of each different possible population size at time t. 

The deterministic model was much simpler to obtain than the probabilistic model. Is 
there a connection between these two models? The answer to this question is found by 
considering the expected value (or average) of the probabilistic model. 

To compute the expected value of a discrete random variable, let 

∞ 

m(t) = 
X 

nPn(t). (19) 
n=N0 
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Differentiating this expression gives the equation 

∞ 

m 0(t) = 
X 

nPn 
0 (t). (20) 

n=N0 

If we substitute the equation for Pn 
0 (t) in (20), we obtain 

∞ 

m 0(t) = 
X 

nPn 
0 (t) 

n=N0 

∞ 

= 
X 

n((n − 1)λPn−1(t) − nλPn(t)) 
n=N0 

∞ 

= λ 
X 

(n(n − 1)Pn−1(t)) − n 2Pn(t). (21) 
n=N0 

Expanding the sum in the expression (21) and recalling that Pn(t) = 0 for n < N0 gives 

m = λ 
¡−N2PN0 (t) + (N0 + 1)N0PN0 (t) − (N0 + 1)2PN0+1(t)

0(t) 0 

+ (N0 + 2)(N0 + 1)PN0+1(t) − (N0 + 2)2PN0+2(t) + . . .
¢ 

= λ(N0PN0 (t) + (N0 + 1)PN0+1(t) + (N0 + 2)PN0+2(t) + . . .) 
∞ 

= λ 
X 

nPn(t) 
n=N0 

= λm(t). (22) 

Equation (22) is the exponential differential equation, the initial condition following from 
the initial population size’s being N0. That is, since PN0 (0) = 1, we have m(0) = N0. The 
solution to the equation (22) with this initial condition is then 

m(t) = N0e λt . (23) 

Equation (23) is also the deterministic model for the population. Thus, the deterministic 
model coincides with them mean of the probabilistic model. This is the motivation for the 
types of processes we will consider in this report. 

The variance of the pure birth process is 

λt 
¡
e λt − 1

¢ 
,v(t) = N0e (24) 

and is obtained similarly using the above approach. The variance provides a measure of 
spread for this model and is unavailable if the deterministic model is used alone. 
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1.3 The Generating Function Method 

We will now present a useful method for analysis of systems of differential equation such as 
(11) and (12) We define the probability generating function (p.g.f.) of a process X(t) as 

φ(r, t) = 
∞X

Pi(t)r i 2 = P0(t) + P1(t)r + P2(t)r + . . . 
i=0 

Probability generating functions are power series (in r) whose coefficients are probabil-
ities. We can use p.g.f.s to obtain the transient solution to systems such as (11). As an 
example of this idea, we use the pure birth process of the previous section. If we take the 
partial of φ with respect to t then 

∂φ 
= 

∞X 

∂t 
i=0 

Substituting in (11) we obtain 

P 0 i 
i (t)r , 

∂φ 
∂t 

= 
∞X

λ(i − 1)Pi−1(t)r i − 
∞X

λiPi(t)r i . (25) 
i=0 i=0 

Re-indexing the series we get 

∂φ 
= 

∂t 
(r − 1)λ 

∞X
iPi(t)r i (26) 

i=0 

Since 

∂φ 
= 

∂r 

∞X
iPi(t)r i−1 (27) 

i=0 

we can re-write (26) as 

∂φ ∂φ 
∂t 

= λr(r − 1) 
∂r 

(28) 

Before we solve this partial differential equation,we will present a method for obtaining 
some useful information about the process. Recalling that the p.g.f. is defined as 

φ(r, t) = 
∞X

Pi(t)r i (29) 
i=0 

we see that 

∂φ 
= 

∞X
iPi(t)r i−1 , (30)

∂r 
i=0 
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so that 

∂φ 
E[X(t)] = . (31)

∂r 

¯̄
¯̄
 
r=1 

where X(t) is a stochastic random variable. Thus applying this idea to (28) we have 

∂ ∂φ ∂ 
· 

∂φ
¸

= λr(r − 1)
∂r ∂t ∂r ∂r 

∂φ ∂φ ∂2φ 
= λ(r − 1) + λr + λr(r − 1) , (32)

∂r ∂r ∂r2 

we then evaluate it at r=1 in order to obtain the expected value 

d ∂ ∂φ 
E[X(t)] = = λE[X(t)]. (33)

dt ∂t ∂r 

¯̄
¯̄
 
r=1 

So as we had before, the expected value of the p.g.f. corresponds to the deterministic 
model 

dx 
= λx(t). 

dt 

This method of obtaining the expected value of he process using the p.g.f. will be used 
throughout the rest of this report. In the case of the pure birth process, we can actually 
solve the p.d.e.. Recalling the separation of variables method assume 

φ(r, t) = F (r)G(t) for all r,t, (34) 

then 

∂φ ∂φ 
= F (r)G0(t) and = F 0(r)G(t). (35)

∂t ∂r 

Substituting (35) into (28) gives 

F (r)G0(t) = r(r − 1)λF 0(r)G(t) 

so that 

=⇒ 
G0(t) F 0(r) 

= r(r − 1)λ 
G(t) F (r) 

for all r,t. (36) 

Thus, 

G0(t) 
= C 

G(t) 
F 0(r) 

r(r − 1)λ = C 
F (r) 

(37) 

C is an arbitrary constant unchanged by negating it (this becomes useful later). 
The equation 

G0(t) 
= −C 

G(t) 
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has the solution 

−Ct G(t) = k1e (38) 

and the equation 

F 0(r) 
r(r − 1)λ = −C 

F (r) 

has the solution 
µ

r − 1
¶

F (r) = k2 
r 

λ
C 

. (39) 

Combining these two equations gives 
Ãµ

r − 1 
r 

!¶
λ
C 

−Ct e .F (r)G(t) = φ(r, t) = k (40) 

A more general solution is obtained when k is a function to be determined. 
Ãµ

r − 1 
r 

λ
C
!¶

φ(r, 0) = r = k (41) 

= 
¡

r−1Let z 
¢ 

r 
λ
C 

and solve for r, so that 

1 
r = k(z) = − (42) 

z 
λ 
C − 1 

We had defined r as k(z), substituting in (40) and simplify to get 

1φ(r, t) = − (43)λ¶µ
C C 

r( r−1 

= reλt 
(44)

1+r(eλt−1) 

We now have a general closed form solution to the probability generating function. We now 
can obtain the probabilities by expanding φ as a power series and rearranging it gives us the 
form µ 

N − 1 
¶ 

−λt)n−N0PN (t) = e −N0λt(1 − e for n ≥ N0. (45)
N0 − 1 

Simulation of a pure birth process 

In analyzing these models, we use simulations as well as analytical techniques. Using the 
fact that the interevent time is exponentially distributed, we are able to generate times and 
events that as we will see solidify our analytical findings. A simulation of a pure birth process 
can be found in Figure 2. 

) λ −Ct −1e 
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Figure 2: λ = 1 

1.3.1 Birth-Death Process 

Deterministic Model 

In the birth-death model, we add a death term to the equation. This represents the rate at 
which people die. As far as ther deterministic model is concerned, this has no qualitative 
effect on the function, as it will continue to look the same as our birth model. However, 
adding the concept of death to our stochastic process allows the possibility of extinction of 
the population. 

dN(t) 
= (λ − µ)N(t) (46)

dt 

where N(t) = population, λ = birth rate, µ = death rate 
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Stochastic Birth-Death (BD) Process 

This time the table of transition probabilities has a rate going both ways: To transition 
up a state, the probability is the birth rate times the population. To transition down to a 
state that represents one less in the population the probability is the death rate times the 
population. 

This state diagram represents increases or decreases in the population 

1 − 2(λ + µ)4 t 
1 − (λ + µ)4 t¶³1 ¶³ ¶³ 1 − n(λ + µ)4 t¶³ 

?º· ?º·λ4 t - ?º· ?(n-1)λ4 t º· - (n)λ4 t -
0 1

¾ µ4 t ¾2µ4 t¹¸ ¹¸ 
. . . 2

¹¸ 
. . . . . . 

¾ n µ4 t 
. . . n 

¾ (n+1) µ4 t¹¸ 

Transition Rate 
i → (i + 1) λi 
i → (i − 1) µi 

The forward Kolmogorov equations are 

P 0 i i 
i (t) = λ(i − 1)Pi−1(t)r + µ(i + 1)Pi+1(t)r i − (λi + µi)Pi(t)r for i ≥ 1 

(47) 

Solving in the manner we are accustomed we find our p.d.e. to be 

∂φ ∂φ 
µ

1 
¶ 

∂φ 
= r(r − 1)λ + r − 1 µ (48)

∂t ∂r r ∂r 

From the p.d.e. we take the partial with respect to r evaluate it at r = 1 in order to get the 
expected value of the N(t) population. 

∂ ∂φ ∂φ ∂φ ∂2φ 
= (r − 1)λ + rλ + r(r − 1)λ 

∂r ∂t ∂r ∂r ∂r2 µ
1 

¶ 
∂φ 1 ∂φ ∂2φ 

+ − 1 µ − µ + r(r − 1)µ (49) 
r ∂r r ∂r ∂r2 

∂ ∂φ ∂φ ∂φ 
= λ − µ

∂r ∂t ∂r ∂r 

¯̄
¯̄
 
r=1 

= (λ − µ)E[N(t)] (50) 

which is similar to the deterministic birth-death model. 

13 



Simulation of a birth-death process 

A simulation of a birth-death process can be found in Figure 3. 
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Figure 3: λ = 1 and µ = .5 

1.4 Birth-Death-Immigration 

Stay with us now. Let’s add immigration, a non-population dependent rate. Immigration 
allows the population to never stay extinct, as there will always be an influx of members 
into the population. 
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Deterministic BDI 

dN(t) 
= (λ − µ)N(t) + β (51)

dt 

where λ = birth rate, µ = death rate, 

N(t) = population, β = immigration rate 

Stochastic Birth-Death-Immigration (BDI) Process 

The table of transition probabilities has a rate going both ways: To transition up a state, the 
probability is the birth rate times the population plus an immigration rate. To transition 
down to a state that represents one less in the population the probability is the death rate 
times the population. 

Transition Rate 
i → (i + 1) λi + β 
i → (i − 1) µi 

The forward Kolmogorov equations are 

P 0 i i 
i (t) = (λ(i − 1) + β)Pi−1(t)r + µ(i + 1)Pi+1(t)r i − (λi + β + µi)Pi(t)r for i ≥ 0 

(52) 

Solving in the manner we are accustomed we find our p.d.e. to be 

∂φ ∂φ 
µ

1 
¶ 

∂φ 
= r(r − 1)λ + β(r − 1)φ(r, t) + r − 1 µ (53)

∂t ∂r r ∂r 

Differentiating with respect to r we have 

∂ ∂φ ∂φ ∂φ ∂2φ 
= (r − 1)λ + rλ + r(r − 1)λ 

∂r ∂t ∂r ∂r ∂r2 

∂φ 
+ βφ(r, t) + β(r − 1) 

∂r 
1 ∂φ 1 ∂φ ∂2φ 

+ ( − 1)µ − µ + r(r − 1)µ . (54) 
r ∂r r ∂r ∂r2 

We evaluate the partial at r = 1 in order to get the expected value of the population. 

Since we know 

∞ 

φ(1, t) φ(r, t)| = 
X 

Pi(t) = 1 (55)r=1 
i=0 
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so applying (55) to (54) 

∂ 
∂r 

∂φ 
∂t 

¯̄
¯̄
 
r=1 

λ 
∂φ 
∂r 

− µ 
∂φ 
∂r 

+ βφ(r, t) 

(λ − µ)E[N(t)] + β (56) 

we can see the result corresponds to the deterministic birth-death-immigration model. 

1.4.1 Simulation of a birth-death-immigration 

A simulation of the BDI process can be found in Figure 4. 
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Figure 4: λ = 1, µ = 1, and β = 5. 
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1.5 Birth-Death-Immigration-Emigration (BDIE) Process 

To keep pace, we can now add an emigration term to the mix. This is not population 
dependent and will remove members from our population at a constant rate. As we will see, 
this produces a complicated term that cannot easily be ignored. A pure immigration and 
emigration process can be referred to in many other texts as a queueing process. 

dN(t) 
= (λ − µ)N(t) + β − γ (57)

dt 

where λ = birth rate, µ = death rate, 

N(t) = population, β = immigration rate, γ = emigration 

Stochastic Birth-Death-Immigration-Emigration Process 

The table of transition probabilities has a rate going both ways: To transition up a state, the 
probability is the birth rate times the population plus an immigration rate. To transition 
down to a state that represents one less in the population the probability is the death rate 
times the population plus an emigration rate. 

Transition Rate 
i → (i + 1) λi + β for i ≥ 0 
i → (i − 1) µi + γ for i ≥ 1 

The forward Kolmogorov equations are 

P 0 i 
i (t) = (λ(i − 1) + β)Pi−1(t)r i + (µ(i + 1) + γ)Pi+1(t)r 

− (λi + β + µi + γ)Pi(t)r i for i ≥ 0 (58) 

Solving in the manner we are accustomed we find our p.d.e. to be 

∂φ ∂φ 
µ

1 
¶ 

∂φ 
= r(r − 1)λ + (r − 1)βφ(r, t) + r − 1 µ

∂t ∂r r ∂r µ
1 

¶ 
−1+ − 1 γφ(r, t) − γP0(t)r . 

r 
(59) 

Differentiating with respect to r we have 

∂ ∂φ ∂φ ∂φ ∂2φ 
= r(r − 1)λ + rλ + r(r − 1)

∂r ∂t ∂r ∂r ∂r2 

+βφ(r, t) + (r − 1)βφ(r, t) µ
1 

¶ 
∂φ 1 ∂φ 

µ
1 

¶ 
∂2φ 

+ − 1 µ − µ + r − 1 µ 
r ∂r r ∂r r ∂r2 

1 
µ

1 
¶ 

∂φ 1 − 
2 
γφ(r, t) + − 1 γ + 

2 
γP0(t). (60) 

r r ∂r r 
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We evaluate the partial at r 1 to get the expected value of the population 

∂ 
∂r 

∂φ 
∂t 

¯̄
¯̄
 
r=1 

λ 
∂φ 
∂r 

+ βφ(r, t) − µ 
∂φ 
∂r 

− γφ(r, t) + γP0(t) 

(λ − µ)E[N(t)] + β − γ + γP0(t) (61) 

which doesn’t look like the deterministic birth-death-immigration-emigration model. This 
is due to the emigration term, γ, being present. Any attempt to relate the deterministic 
model with a stochastic process when there is a non-population dependent rate (emigration) 
affecting their population’s transition will result in this troublesome issue. For a detailed 
discussion of this situation, see the article by Switkes et.al [8]. 

Simulation of a birth-death-immigration-emigration process 

A simulation of a BDIE process can be found in Figure 5. 
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Figure 5: λ = 1, µ = .4, β = 1, γ = 5. 
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1.6 Birth-Death Process with Polynomial Transition Rates 

We now generalize the preceding sections by considering a population that is described by 
the differential equation 

dx 
= f(x, n) − g(x, m) (62)

dt 

where x(t) is the size of the population at time t and 

f(i, n) = a0 + a1i + a2i
2 + . . . + a n i

n (63) 

g(i, m) = b0 + b1i + b2i
2 + . . . + bmim (64) 

Here f and g are the respective birth and death rates. 
The work of the previous sections has motivated this population model and suggests that 

we can consider a birth-death formulation, however we noted the difficulty associated with 
having an emigration rate in considering the BDIE process so in the subsequent work, we 
will assume b0 = 0. 

Let X(t) be a nonnegative, integer valued process with transition described in the follow-
ing table 

Transition Rate 
i → i + 1 f(i, n), i ≥ 0 
i → i − 1 g(i, n), i ≥ 1 

X 

Then if 

Pk(t) = P [X(t) = k|X(0) = 0], (65) 

we can derive the forward Kolmogorov equations in the usual manner. Specifically, we have 
for k ≥ 0. 

Pk 
0 (t) = f(k − 1, n)Pk−1(t) + g(k + 1,m)Pk+1(t) − (f(k, n) + g(k, m))Pk(t). (66) 

Letting 

∞ 
kφ(r, t) = Pk(t)r (67) 

k=0 

be the probability generating function, we have 

X

X 

∞ 

∂t 
k=0 
∞ 

∂φ 
P 0 k 

k(t)r= 

X∞ 

k=0 k=0 

k k 

X 

f(k − 1, n)Pk−1(t)r 

∞ 

g(k + 1,m)Pk+1(t)r+= 

k− (f(k, n) + g(k, m))Pk(t)r , (68) 
k=0 
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upon substitution of equation (66). To simplify this expression for ∂φ we need to evaluate 
∂t 

series of the form 
∞X

knPk(t)r k (69) 
k=0 

in terms of the p.g.f. φ(r, t). To get an idea of how to represent this series, we will consider 
a few cases (you will recognize these from the logistic and allee processes). 

Specifically, when n = 0, then (69) becomes 

∞X
Pk(t)r k = φ(r, t), (70) 

k=0 

as this is the definition of φ(r, t). 
When n = 1, equation (69) can be expressed as a partial derivative of φ(r, t) with respect to 
r as follows 

∞X
kPk(t)r k = r 

∞X
Pk(t)krk−1 = r 

∂φ 
. 

∂r 
(71) 

k=0 k=0 

If n = 2, equation (69) becomes 

∞X
k2Pk(t)r k = 

∞X
[k(k − 1) + k]Pk(t)r k 

k=0 k=0 

= 
∞X

k(k − 1)Pk(t)r k + 
∞X

kPk(t)r k . (72) 
k=0 k=0 

The first sum in this expression can be recognized as the second partial derivative with 
respect to r 

∞X
k(k − 1)Pk(t)r k 2 = r 

∞X
k(k − 1)Pk(t)r 

∂2φk−2 2 = r . 
∂r2 

(73) 
k=0 k=0 

The last sum in (72) is given by equation (71), so 

∞X
k 2 ∂

2φ ∂φ 
k2Pk(t)r = r + r . (74)

∂r2 ∂r 
k=0 

For the case n = 3, the sum 

∞X
k3Pk(t)r k (75) 

k=0 

can be expressed as partial derivatives of φ(r, t) with respect to r by noting that 

k3 = k(k − 1)(k − 2) + 3k2 − 2k, (76) 
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so that 

∞X
= 

∞X
k3Pk(t)r k [k(k − 1)(k − 2) + 3k2 − 2k]Pk(t)r k 

k=0 k=0 
∞X

3 k−3k(k − 1)(k − 2)Pk(t)r= r 
k=0 

+3 
∞X

k2Pk(t)r k − 2 
∞X

kPk(t)r k 

k=0 k=0 

∂3φ ∂2φ ∂φ 
= r 3 + 3r 2 − 2r , (77)

∂r3 ∂r2 ∂r 

by using equations (71) and (74). 
To obtain a general formula for this pattern we will introduce some notation. The falling 

factorial polynomial is defined for reala x as 

[ ]x n 

X

= x(x − 1)(x − 2) . . . (x − n + 1) for n=1,2,. . . (78) 

with 

[x]0 = 1 (79) 

Using this notation one can show (c.f. Swift [6]) 

n 
n S2(n, j)[x]j (80)x = 

X 

j=0 

where S2(n, j) is the Stirling number of the second kind. The Stirling number of the second 
kind S2(n, j) is defined as the number of ways of partitioning a set of n elements into j 
(nonempty) subsets. A detailed discussion of the properties of Stirling numbers can be 
found in Swift [6]. 

Using equation (80), we can write the sum in equation (69) as 

n∞X ∞X
k kknPk(t)r S2(n, j)[k]j Pk(t)r= 

X 
k=0 k=0 j=0 

n ∞X
j k−jS2(n, j)[k]jPk(t)r= r 

X 
j=0 k=0 
n ∞X

j S2(n, j) k−j[k]jPk(t)r= r 

X 
j=0 k=0 
n 

∂j φj S2(n, j) . (81)= r 
∂rj 

j=0 
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Using this expression, we can write the first sum of equation (68) as 

nX∞X ∞X
k = al(k − 1)lPk−1(t)r kf(k − 1, n)Pk−1(t)r 

k=0 k=0 l=0 
nX ∞X

(k − 1)lPk−1(t)r k = al 

l=0 k=0 
nX ∞X

klPk(t)r k+1 = al 

l=0 k=0 

ln XX ∂j φj S2(l, j) . (82)= r al r 
∂rj 

l=0 j=0 

X 

Similarly for the second term of (68) have 

m∞X ∞X
k bl(k + 1)lPk+1(t)r k g(k + 1, m)Pk+1(t)r = 

X 
k=0 k=0 l=1 

m ∞X
(k + 1)lPk+1(t)r kbl = 

X 
l=1 k=0 
m ∞X

klPk(t)r k−1bl = 

XX 
l=1 k=0 

m m 
∂j φ1 j S2(m, j)bl (83)= r . 
∂rj 

XX 

r 
l=1 j=0 

A very similar calculation gives 

n n∞X ∂j φk j S2(n, j)f(k, n)Pk(t)r (84)= al r 
∂rj 

X 

k=0 l=0 j=0 

and 
m∞X Xm 

lm XX 

k=0 l=1 j=0 

Combining these expressions in the representation for ∂φ in equation (68) gives 
∂t 

∂j φk j S2(m, j)g(k, m)Pk(t)r bl (85)= r . 
∂rj 

¶

Xn 

∂j φ∂φ 
µ

1 
= 

∂t r 
j− 1 bl S2(l, j) r 

∂rj 

X 

l=1 j=1 

l 
∂j φ j+ (r − 1) S2(l, j) (86)al r . 
∂rj 

l=0 j=1 

This last expression is the p.d.e. for the p.g.f. of a birth death process with polynomial 
transition rates. This expression is extremely difficult to solve, only special cases can be 
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pursued. We can, however obtain some useful and interesting information. We can find the 
expected population size, as usual we take the partial with respect to r, to obtain 

m lXX ∂j φ∂ ∂φ 1 j= − bl S2(l, j) r 
2 ∂rj∂r ∂t r 

l=1 j=1 

¶ 
∂ 
∂r 

lX 

l=1 j=1 

lm XX ∂j φ
µ

1 
r 

nX 

rj ]− 1 [ bl S2(l, j)+ 

+ 

∂rj 

∂j φ jS2(l, j) ral 
∂rj 

l=0 j=1 

lX 

X 

n 

X 

l=0 j=1 

X 

Interchanging the order of the derivatives and evaluating this expression at r = 1 we have 

m l n lXX 

∂j φ∂ j ].+(r − 1) [ S2(l, j) (87)al r 
∂rj∂r 

¯̄
¯̄
¯ 

¯̄
¯̄
¯ 

∂j φ ∂j φd 
E[X(t)] = − bl S2(l, j) S2(l, j) (88)+ al . 

∂rj ∂rjdt 
l=1 j=1 j=1l=0r=1 r=1 

But recalling that φ is a p.g.f., the jth partial derivative at r = 1 is 

∂j φ 
∂rj 

¯̄
¯̄
 = E[X(X − 1)(X − 2) . . . (X − j + 1)] (89) 
r=1 

that is, in falling factorial polynomial notation 
¯̄
¯̄
 

∂j φ 
∂rj 

= E[[X]j ]. (90) 
r=1 

lm XX 

Substitution of (90) into (88) yields 

XX 

X 

n l 

l=1 j=1 l=0 j=1 

Falling factorials [x]j can be expressed as 

∞ 

d 
E[X(t)] = − bl S2(l, j)E[[X]j ] + S2((l, j)E[[X]j ]. (91) 

(92) 

al
dt 

h[x]j S1(j, h)x= 

X 

h=0 

where S1(j, h) is the Stirling number of the first kind and is defined as the coefficient of xh 

in [x]j (c.f. Swift [6]). Thus 

∞ 

S2(j, h)E[Xh],E[[X]j ] = (93) 
h=0 
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which substituting into (91) gives 

d 
m l 

l=1 j=1 h=0 

X 

ln X 

X

X 

∞X
S1(j, h)E[Xh]E[X(t)] = − bl S2(l, j)

dt 

∞X
S1(j, h)E[Xh].S2(l, j) (94)+ al 

l=0 j=1 h=0 

Fortunately, we can reduce this expression as there is a very useful orthogonal relation 
between Stirling numbers of the first and second kind. In particular 

½ 
0 for l 6= h 

S2(l, j)S1(j, h) = . (95)
1 for l = h 

X 

j 

So 

X

X 

m lX

X 

l=1 h=0 j=1 

n l 

∞Xd 
S2(l, j)S1(j, h)E[Xh] 

S2(l, j)S1(j, h)E[Xh] 

E[X(t)] = − bl
dt 

∞X
+ al 

l=0 h=0 j=1 

XXn m 

l=0 l=1 

which corresponds to the deterministic model given in equation (62). Thus, birth-death 
process with polynomial transition rates correspond to the deterministic population size in 
a natural way. 
We can summarize the preceding as the following Theorem: 

Theorem 1.1. If X(t) is a non-negative integer valued stochastic process with transition 
rates given by 

alE[X l] − blE[X l], (96)= 

Transition Rate 
i → i + 1 f(i, n), i ≥ 0 
i → i − 1 g(i, n), i ≥ 1 

where 

inf(i, n) = a0 + a1i + a2i
2 + . . . + an , ai ≥ 0 for i = 0, 1, . . . , n (97) 

and 

g(i, m) = b1i + b2i
2 + . . . + bmim, bi ≥ 0 for i = 1, . . . , m (98) 
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and if 

k 
∞ 

k=0 

Then 

X 

X 

m 

φ(r, t) = Pk(t)r . (99) 

¶ lX 

j=0l=1 

ln XX 

∂φ 
µ

1 
= − 1 

∂t r 
∂j φ 

S2(l, j) 
∂rj 

∂j φ j+(r − 1) S2(l, j) (100)al r 
∂rj 

l=0 j=1 

X 

where S2(l, j) is the Stirling number of the the second kind. The expected value E[X(t)] of 
the process X(t) satisfies the differential equation 

n mXd 
alE[X l(t)] − blE[X l(t)].E[X(t)] = (101)

dt 
l=0 l=1 

Here we have examples of this process. 

Example 1: Logistic Birth-Death 

As in the simple birth-death process, births occur proportional to the population size with 
a birth rate λ > 0. To introduce the logistic effect in the population, we will assume that 
population crowding and competition for resources increases the death rate. Mimicking the 
deterministic logistic model, we increase the usual death rate µ > 0, with an additional term 
ε > 0 which is proportional to the square of the population size. 

Deterministic 

dx(t) 
= (λ − µ)x − εx2 (102)

dt 

where x = population, λ = birth rate, µ = death rate, 
λ−µε = 

k , k=carrying capacity 

Thus, this logistic birth-death process can be described as having the following transitions 
and rates: 

Transition Rate 
i → i + 1 λi 
i → i − 1 µi + εi2 
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The forward Kolmogorov equations are 

i i iPn 
0 (t) = λ(i − 1)Pi−1(t)r + µ(i + 1)Pi+1(t)r + ε(i + 1)2Pi+1(t)r 

− (λi + µi + εi2)Pi(t)r i . (103) 

Solving in the manner we are accustomed we find our p.d.e. to be 

∂φ 
∂t 

= 

+ 

∂φ 
µ

1 
¶ 

∂φ 
r(r − 1)λ + r − 1 µ

∂r r ∂r 
∂2φ2 

µ
1 

¶ µ
1 

¶ 
∂φ 

r − 1 ε + r − 1 ε 
r ∂r2 r ∂r 

(104) 

Differentiating with respect to r we have 

∂ ∂φ ∂φ ∂φ ∂2φ 
∂r ∂t 

= (r − 1)λ + rλ + r(r − 1)λ 
∂r ∂r ∂r2 µ

1 
¶ 

∂φ 1 ∂φ 
µ

1 
¶ 

∂2φ 
+ − 1 µ − µ + r − 1

r ∂r r ∂r r ∂r2 

µ
1 ∂2φ ∂2φ ∂3φ

¶ 
2 

µ
1 

¶
+ 2r − 1 ε − ε + r − 1 ε 

r ∂r2 ∂r2 r ∂r3 

µ
1 ∂2φ

¶ 
∂φ 1 ∂φ 

µ
1 

¶
+ − 1 ε − ε + r − 1 ε 

r ∂r r ∂r r ∂r2 
(105) 

We evaluate the partial at r = 1 to get the expected value of the population. 

∂ ∂φ 
∂r ∂t 

¯̄
¯̄
 
r=1 

= 
∂φ 

λ 
∂r 

∂φ − µ 
∂r 

∂2φ − ε 
∂r2 

∂φ − ε 
∂r 

= (λ − µ)E[X(t)] − εE[X(t)(X(t) − 1)] − εE[X(t)] 

= (λ − µ)E[X(t)] − εE[X(t)2] + εE[X(t)] − εE[X(t)] 

= (λ − µ)E[X(t)] − εE[X(t)2] (106) 

which is similar to the deterministic logistic model. 

Simulation of a logistic birth-death process 

A simulation of the logistic process can be found in Figure 6. 

Example 2: Allee Birth-Death 

The purpose of the allee model is to include the fact that a certain population size is needed 
to sustain growth. 
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Figure 6: (λ − µ) = 4 and ε = .1. 

Deterministic 

dx(t)
ωx(a − x)(x − b) (107)

dt 

where x= population, ω = growth rate, 
a = population required to sustain growth, b= carrying capacity 

This logistic birth-death process can be described as having the following transitions and 
rates: 

Transition Rate 
ω(a + b)i2i → i + 1 

i → i − 1 ωabi + ωi3 

Increase can occur through birth, a proportional increase dependent on population size 
λi > 0,. A decrease in population size will come through death µi + ωi3 . 
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For notation purposes we will use 

α 

β 

= 

= 

ω(a + b) 

ωab 

γ = ω (108) 

The forward Kolmogorov equations are 

P 0 i (t) 
i = α(i − 1)2Pi−1(t)r + β(i + 1)Pi+1(t) + γ(i + 1)3Pi+1(t) 

− (αi2 + βi + γi3)Pi(t). (109) 

Solving in the manner we are accustomed we find our p.d.e. to be 

∂φ ∂2φ
µ

∂φ 
µ

1 
¶ 

∂φ 2 

¶
= α(r − 1) r + r + βr − 1

∂t ∂r2 ∂r r ∂r µ
1 ∂3φ ∂2φ

¶ µ
∂φ 3 2 

¶
+ γ − 1 r + 3r + r . 

r ∂r3 ∂r2 ∂r 

Differentiating with respect to r we have 

∂ ∂φ ∂2φ ∂2φ
µ

∂φ d ∂φ 2 

¶ · 
2 

¸
= α r + r + α(r − 1) r + r 

∂r ∂r ∂r2 ∂r dr ∂r2 ∂r µ
1 

¶ 
∂φ 1 ∂φ 

µ
1 

¶ 
∂2φ 

+ β − 1 − β + βr − 1
r ∂r r ∂r r ∂r2 

1 ∂3φ ∂2φ
µ

∂φ 2 2 

¶
− γ r + 3r + r 

2r ∂r3 ∂r2 ∂r 
∂3φ ∂2φ

µ
1 

¶ 
d 

· 
∂φ 2 2 

¸
+ γ − 1 r + 3r + r . 

r dr ∂r3 ∂r2 ∂r 

We evaluate the partial at r = 1 to get the expected value of the population. 

∂ ∂φ ∂2φ ∂φ ∂φ ∂3 ∂2φ ∂φ 
= α + α − β − γ − 3γ − γ 

∂r ∂t ∂r2 ∂r ∂r ∂r3 ∂r2 ∂r 

¯̄
¯̄
 
r=1 

= αE[X(t)(X(t) − 1)] + alphaE[X(t)] − βE[X(t)] 

−γE[X(t)(X(t) − 1)(X(t) − 2)] − 3γE[X(t)(X(t) − 1)] 

−γE[X(t)] 

= αE[X(t)2] − αE[X(t)] + αE[X(t)] − βE[X(t)] 

−γE[X(t)3] + 3γE[X(t)2] − 2γE[X(t)] 

−3γE[X(t)2] + 3γE[X(t)] − γE[X(t)] 

= αE[X(t)2] − βE[X(t)] − γE[X(t)3]. 

(110) 

(111) 

(112) 

Recalling that 

α 

β 

= 

= 

ω(a + b) 

ωab 

γ = ω 
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gives (112) to be 

d 
dt 

E[X(t)] ω(a + b)E[X(t)2] − ωabE[X(t)] − ωE[X(t)3] (113) 

which is similar to the deterministic Allee model. 

Simulation of a Allee birth-death process 

A simulation of the Allee model can be found in Figure 7. 
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Figure 7: ω(a + b) = 5, ωab = 6, and ω = .09. 

1.7 Extinction 

The behavior of birth-death processes with polynomial transition rates is rather interesting 
and as shown in the previous section generalizes a large class of deterministic population 
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⎪⎪⎪

⎪⎪⎪

models. Our work with simulating these processes uncovered some surprising behavior. 
While simulating Allee models with low carrying capacities we noticed that the averages 
were ever so slightly smaller than the deterministic model as time went on. This led to the 
discovery that some of the simulations were becoming extinct. This outcome is by no means 
unreasonable with small populations, but it raises a curious question. Exactly what is the 
probability of extinction for our stochastic population processes? 

To develop the appropriate tools to analyze these processes, we consider a general birth-
death process X(t) with transitions and rates given in the following table 

Transition Rate 
i → i + 1 λi, i ≥ 0 
i → i − 1 µi, i ≥ 1 

Q

Q

here λi ≥ 0 is the state-dependent birth rate and µi ≥ 0 is the state-dependent death rate. 
In this notation we can state a well-known result, the proof of which can be found in either 
Allen [76] or Karlin and Taylor [76]. 

Theorem 1.2. Consider a birth and death process with birth and death rates λn > 0 and 
µn > 0, n ≥ 1, where λ0 = 0 so that 0 is an absorbing state. The probability of absorbtion 
into state 0 from an initial state m is 

i 

j=1 

i 

j=1 

⎧ 

⎪⎨
∞ i µjP Q

i=m j=1
P

P 

∞ 

i=1 

∞ 

λj µj < ∞,if∞ iP λjQ 
λji=m j=1 

µj1+ (114) 
µj = ∞.⎪⎩ 1 if 
λj

i=1 

We can apply this result to birth-death with polynomial transition rates. Let 

λ(i, n) 

µ(i, m) 

= 

= 

inf(i, n) = a0 + a1i + a2i
2 + ... + an

im g(i, m) = b0 + b1i + b2i
2 + ... + bm

(115) 

(116) 

Let a0 = 0, so that there is no immigration rate and hence state 0 is absorbing. 

Yk 

λii=1 

µi
Wk = (117). 

So 

Q

Q 

k+1 
µi 
λi 

i=1 

k 

i=1 

µk+1 

Wk+1 
= 

Wk µi 
λi 

b0 + b1(k + 1) + b2(k + 1)2 + ... + bm(k + 1)m 

= = . (118)
λk+1 a1(k + 1) + a2(k + 1)2 + ... + an(k + 1)n 
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Thus 

Wk+1 b0 + b1(k + 1) + b2(k + 1)2 + ... + bm(k + 1)m 

lim = lim 
k→∞ Wk k→∞ a1(k + 1) + a2(k + 1)2 + ... + an(k + 1)n 

kmbm 
= lim . (119) 

k→∞ ankn 

This limit will be greater than 1 if m = n and bm > am or if m > n, so if either of these 
conditions are satisfied then 

Wk+1
lim > 1 (120)
k→∞ Wk 

so that by the ratio test, the series 

∞ ∞XX kY
Wk 

µi 
= (121)

λii=1k=1 k=1 

diverges. This by (114) of Theorem 1.2 gives that extinction is certain, 
More specifically 

lim P0(t) = 1. (122) 
t→∞ 

We summarize this result in the following proposition. 

Proposition 1.3. If X(t) is a nonnegative integer valued process with transition given by 

Transition Rate 
i → i + 1 f(i, n), for i ≥ 1 
i → i − 1 f(i, m), for i ≥ 1 

where 

inf(i, n) = a1i + a2i
2 + . . . + an (123) 

and 

im g(i, m) = b1i + b2i
2 + . . . + bm (124) 

if m = n and bm > an or if m > n. 
Then 

lim P0(t) = 1 
t→∞ 

(125) 

so that extinction is certain. 

We present two examples that are relevant to our previous work. 
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Example 1: Logistic Birth Death Process 

Recall the deterministic Logistic Model 

dx x 
= rx 

³ 
1 − 

´ 
where r > 0 and k > 0 (126)

dt k 

We can write the change in x as the change due to growth so 
µ 

i 
¶

λi − µi = ri 1 − . (127)
k 

Since the right hand side of this expression is a second degree polynomial, it is reasonable 
to suppose λi and µi are quadratic polynomials of the form 

λi = b1i + b2i
2 (128) 

µi = d1i + d2i
2 . (129) 

where b1, b2, d1, d2 are constants. 

The difference λi − µi is 

λi − µi = (b1 − d1)i + (b2 − d2)i
2 . (130) 

Substituting in (127) into (130) we get 

λi − µi = (b1 − d1)i + (b2 − d2)i
2 

µ 
i 
¶

= ri 1 − 
k 

ri2 

= ri − . (131)
k 

Now comparing coefficients gives 

b1 − d1 = r (132) 

and 

−r 
b2 − d2 = 

k 
. (133) 

Solving for k we find 

k = 
d1 − b1 

. 
b2 − d2 

(134) 

Since k > 0 we can say 

b2 − d2 < 0 as b1 − d1 > 0 

so 

b2 < d2. 

Thus, by our proposition, extinction is certain in the logistic birth-death process. 
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Example 2: Allee Birth Death Process 

The deterministic Allee model is given by 

dx 
= rx(a − x)(x − b) (135)

dt 

where r > 0, a > 0, b¿0. We can write the change as 

λi − µi = ri(a − i)(i − b). (136) 

As the Allee model has the right hand side as a cubic polynomial it is reasonable to 
suppose that λi and µi are cubic polynomials of the form 

λi = b1i + b2i
2 + b3i

3 (137) 

µi = d1i + d2i
2 + d3i

3 , (138) 

begincenter with b1, b2, b3, d1, d2, d3 as constants. The difference λi − µi is the change in 
population, so 

λi − µi = (b1 − d1)i + (b2 − d2)i
2 + (b3 − d3)i

3 (139) 

Thus, 

λi − µi = ri(a − i)(i − b) 

= rabi + (ra − rb)i2 − ri3 

= (b1 − d1)i + (b2 − d2)i
2 + (b3 − d3)i

3 (140) 

so that comparing coefficients gives 

b1 − d1 = rab (141) 

and 

b2 − d2 = r(a − b) (142) 

and 

b3 − d3 = −r. (143) 

Since r > 0 

b3 − d3 = r < 0 (144) 

so that 

b3 < d3 (145) 

Thus, by our proposition, extinction is certain in the Allee birth-death process. 
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2 Competing Population Models 

2.1 The Classic Predator-Prey Model 

We will now consider a classical model describing the interaction between two species: a 
predator and its prey. This model was originally proposed by A. J. Lotka and V. Volterra 
in the 1920s. 

The model assumptions, simplifications, and notation. 

1. There are two species interacting: a prey species x and a predator species y. For the 
purposes of this model no other species interact with these two. 

2. In the absence of the predator, the prey exhibits pure exponential growth. In particular 
dx = αx where α > 0. Implicit in this assumption is that there is sufficient food and
dt 
space to allow the prey species to grow indefinitely. 

3. In the absence of the prey, the predator species dies out exponentially. In particular, 
dy = −γ y where γ > 0. Thus although it is not explicitly mentioned, there is other
dt 
food for the predators, but not enough to sustain the population. 

4. When the two species are in the presence of each other, the predators kill the prey in such a 
way that the predator population increases at a rate proportional to the product of the 
number of predators and the number of prey (i.e., xy). Similarly the prey population 
is decreased by an amount proportional to the product of the population sizes. 

dx 
dt 

= αx − βxy (146) 

dy 
dt 

= −γy + δxy (147) 

where α, β, γ, δ are growth rates. 
Factoring gives 

dx 
dt 

= x(α − β y) 

dy 
dt 

= y(δ x − γ). 

Phase plane of a predator prey model 

The nullclines for dx = 0 are x = 0 and y = α/β. The nullclines for dy = 0 are y = 0
dt dt 

and x = γ/δ. Graphing these in the phase plane reveals two fixed points (x̄, ȳ) = (0, 0) 
and (x̄, ȳ) = (γ/δ, α/β). (The points (γ/δ, 0) and (0, α/β) are not points of intersection of 
different nullclines.) A phase plane is shown in Figure 8. Naturally, we are not interested 
in the (0, 0) solution. The (γ/δ, α/β) solution has trajectories circling about it, though it is 
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Figure 8: The initial populations are 120 for the prey population and 40 for the predator 
population. The growth rates are α = 1, β = .03, γ = 1, and δ = .02 

not clear from this analysis if the solutions are spiraling in or out, or if they are circling in 
pure oscillatory motion. Jacobian analysis determines this. 

To help in the analysis of this model we will “linearize” it. 

F (x, y) = αx − βxy (148) 

G(x, y) = −γy + δxy (149) 

We will replace these functions with their Taylor series approximations. Here is the 
linearization of both populations at the point (x̄, ȳ) . 

∂F ∂F 
F (x, y) ≈ F (x̄, ȳ) + (x̄, ȳ)(x − x̄) + (x̄, ȳ)(y − ȳ) (150)

∂x ∂y 

∂G ∂G 
G(x, y) ≈ G(x̄, ȳ) + (x̄, ȳ)(x − x̄) + (x̄, ȳ)(y − ȳ). (151)

∂x ∂y 

Here u and v are the distance from x and y to the critical point, x̄ and ȳ, that is 

u = x − x̄ (152) 

v = y − y.̄ (153) 

We use u and v to obtain new functions of the two populations for the linearized form 

du ∂F ∂F ≈ (x̄, ȳ)u + (x̄, ȳ)v (154)
dt ∂x ∂y 

dv ∂G ∂G ≈ (x̄, ȳ)u + (x̄, ȳ)v (155)
dt ∂x ∂y 
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The partials with respect to x and y for both functions are 

∂F 
= α − βy (156)

∂x 
∂F 

= −βx (157)
∂y 
∂G 

= δy (158)
∂x 
∂G 

= γ + δx. (159)
∂y 

Using the above equations, we can write 

∂F ∂F µ 
u0(t) 

¶ µ 
∂x (x̄, ȳ) 

∂y (x̄, ȳ) 
¶µ 

u(t) 
¶

≈ ∂G ∂G , (160)
v0(t) (x̄, ȳ) (x̄, ȳ) v(t)

∂x ∂y 

where 

∂F ∂F µ 
∂x ∂y 

¶
J(x, y) = (161)∂G ∂G 

∂x ∂y 

is the Jacobian of F and G. 
The critical point is (γ

δ , 
α
β ) and when we evaluate the Jacobian we have 

−βγ γ α 
µ 

0 
¶

J( , ) = αδ 
δ . (162)

δ β β 0 

After solving the Jacobian we end up with two differential equations, 

du βγ 
= u 0 = − v (163)

dt δ 
dv αδ 

= v 0 = u. (164)
dt β 

The chain rule from calculus implies that 

du du dt 
= ;

dv dt dv 

thus 
du γβ2 v 

= − . 
dv αδ2 u 

The key to this analysis is that this is a separable differentiable equation. Thus 

αδ2u du = −γβ2 v dv. 

Integrating both sides yields 
αδ2u2 γβ2dv2 

= − + C. 
2 2 
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Rearranging gives 
αδ2u2 

2 
+ 

γβ2v2 

2 
C or 

u2 

β2γ 
+ 

v2 

αδ2 
C. 

Substituting to get back our to our original variables yields 
¡
x − γ 

δ 

¢2 

β2γ 
+ 

(y − α 
β )

2 

αδ2 
C. 

This is, of course, the equation for an ellipse centered at the fixed point with axes parallel to 
the coordinate axes. The implication is that close to the fixed point, the trajectories look like 
ellipses; which confirms our prior determination that the fixed point was a center. Indeed, 
close to the fixed point the trajectories are ellipses, further away they still oscillate about 
the fixed point, but with a more complicated shape. A time plane of the predator prey is in 
Figure 9 
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Figure 9: The initial populations are 120 for the prey population and 40 for the predator 
population. The growth rates are α = 1, β = .03, γ = 1, and δ = .02 

2.2 Stochastic Classic Predator-Prey 

Let X(t) be the size of the prey population at time t and Y (t) be the size of the predator 
population at time t. In the model to be formulated, it is now assumed that instead of 
a (deterministic) rate of predator and prey births and deaths, there is a probability of a 
predator and prey birth or death. Thus X(t) and Y (t) are time dependent random variables. 

Let the probability of there being i preys and j predators at time t be denoted by 

Pi,j (t) = P [X(t) = i, Y (t) = j], for i = 0, 1, 2, . . . , j = 0, 1, 2, . . . . 
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As in the simple birth-death process for a single species, births and deaths in this process 
occur proportional to the population size. We assume that the infinitesimal probability of 
an individual prey birth during the small time interval Δt is αiΔt + o(Δt), where α > 0 is 
the prey birth rate. Similarly, we assume that the infinitesimal probability of an individual 
predator death during the small time interval Δt is γjΔt+o(Δt), where δ > 0 is the predator 
death rate. 

To mimic the deterministic model interaction term, we assume that the infinitesimal 
probability of a prey death occuring during Δt is βijΔt + o(Δt), where β > 0 is the prey 
death rate. Similarly, a predator birth occurs during Δt with infinitesimal probability δijΔt+ 
o(Δt), with γ > 0. These rates are summarized in the following table. 

Transition 
(i, j) → (i + 1, j) αi 
(i, j) → (i − 1, j) βij 
(i, j) → (i, j − 1) γj 
(i, j) → (i, j + 1) δij 

Rate 

These transitions occur on the nonnegative integer lattice and can be visualized in the 
following way: 

#Ã 

i,j+1

"! 
γ(j + 1) 

#Ã ? #ÃÂ¿α(i − 1) β(i + 1)j 
- ¾i-1,j i,j i+1,j

"!ÁÀ "!
6 

δ(j − 1)i#Ã 

i,j-1

"! 

The standard argument using the forward Kolmogorov equations is used to obtain Pi,j (t), 
by considering the probability Pi,j (t + Δt). This probability is obtained as the sum of the 
probabilities of the following mutually exclusive events: 

a) There are i prey and j predators by time t and no birth or deaths of either species occur 
in (t, t + Δt). 
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b) There are i − 1 prey and j predators by time t and a prey birth occurs in (t, t + Δt). 

c) There are i prey and j − 1 predators by time t and a predator birth occurs in (t, t + Δt). 

d) There are i + 1 prey and j predators by time t and one prey death occurs in (t, t + Δt). 

e) There are i prey and j + 1 predators and one predator death occurs in (t, t + Δt). This 
gives 

Pi,j 
0 (t) = α(i − 1)Pi−1,j (t) + β(i + 1)jPi+1,j (t) 

+ γ(j + 1)Pi,j+1(t) + δ(j − 1)iPi,j−1(t) 

− (αi + βij + γj + δij)Pi,j (t). (165) 

This doubly infinite system of differential equations is not easily solved and in fact, it 
appears to be an open problem to obtain its closed form solution. The system can however, 
be studied by letting 

φ(r, s, t) = 
∞X∞X

Pi,j (t)r i j (166)s 
i=0 j=0 

be the probability generating function for this system. We do not have Pij(t) but we do have 
P 0 (t) so we plug that into the p.g.f.ij 

∂φ 
∂t 

(r, s, t) = 
∞X∞X

i jP 0 (t)r si,j (167) 
i=0 j=0 

Using in equation (165) in equation (167) we have 

∞X∞X∂φ i j(r, s, t) = − (αi + βij + γj + δij)Pi,j (t)r s 
∂t 

i=0 j=0 

∞X∞X
α(i − 1)Pi−1,j (t)r i sj+ 

i=0 j=0 

∞X∞X
β(i + 1)jPi+1,j(t)r i sj+ 

i=0 j=0 

∞X∞X
γ(j + 1)Pi,j+1(t)r i sj+ 

i=0 j=0 

∞X∞X
δ(j − 1)iPi,j−1(t)r i sj (168)+ 

i=0 j=0 

We expand the summation through the first term and combine rates, so that 

∞X∞X
α(i − 1)Pi−1, j(t)r i sj − 

∞X∞X
αiPij (t)r i j (169)s 

i=0 j=0 i=0 j=0 
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by re-indexing with i ← i + 1 

= 
∞X∞X

αiPij (t)r i+1 sj − 
∞X∞X

αiPij (t)r i j (170)s 
i=0 j=0 i=0 j=0 

Factoring out common terms, this sum becomes 

= r(r − 1)α 
∞X∞X

Pij (t)r i−1 js 
i=0 j=0 

∂φ 
= r(r − 1)α . (171)

∂r 
Now we do this same procedure for the next term 

∞X∞X
β(i + 1)jPi+1,j (t)r i sj − 

∞X∞X
i jβijPi,j (t)r s 

i=0 j=0 i=0 j=0 

∞X∞X
βijPij (t)r i−1 sj − 

∞X∞X
i jβijPi,j (t)r= s 

i=0 j=0 i=0 j=0 

∞X∞X1 i−1 j−1 rs( − 1)β Pi,j (t)r= s 
r 

i=0 j=0 

1 ∂2φ 
= rs( − 1)β . (172) 

r ∂r∂s 
Similarly 

∞X∞X
γ(j + 1)Pi,j+1(t)r i sj − 

∞X∞X
i jγjPij (t)r s 

i=0 j=0 i=0 j=0 

∞X∞X
γjPij (t)r i j−1 −s 

∞X∞X
i jγjPij (t)r= s 

i=0 j=0 i=0 j=0 

∞X∞X1 i j−1 s( − 1)γ Pij (t)r= s 
s 

i=0 j=0 

1 ∂φ 
= s( − 1)γ . (173) 

s ∂s 
Finally, 

∞X∞X
δ(j − 1)iPi,j−1(t)r i sj − 

∞X∞X
i jδijPi,j (t)r s 

i=0 j=0 i=0 j=0 

∞X∞X
δijPi,j (t)r i j+1 −s 

∞X∞X
i jδijPi,j (t)r= s 

i=0 j=0 i=0 j=0 

rs(s − 1)δ 
∞X∞X

Pi,j (t)r i−1 j−1 = s 
i=0 j=0 

∂2φ 
= rs(s − 1)δ . (174)

∂r∂s 
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Combining the four terms above,we obtain the p.d.e., 

∂φ ∂φ 
µ

1 
¶ 

∂2φ 
= r(r − 1)α + rs − 1 β 

∂t ∂r r ∂r∂s µ
1 

¶ 
∂φ ∂2φ 

+ s − 1 γ + rs (s − 1) δ . (175) 
s ∂s ∂r∂s 

We analyze this p.d.e. as we did in the single population case by taking the partial with 
respect to r and evaluating it at r = 1 and s = 1 to get the expected value for the prey 
population. That is, 

∂φ ∂φ ∂2φ 
= α − β 

∂r ∂r ∂r∂s 

¯̄
¯̄
 
r=s=1 

= αE[X(t)] − βE[X(t)Y (t)] (176) 

Similarly we can also take the partial with respect to s and evaluate it at r = 1 and s = 1 
to get the expected value for the predator population, 

∂φ ∂φ ∂2φ 
= −γ + δ 

∂s ∂s ∂r∂s 

¯̄
¯̄
 
r=s=1 

= −γE[Y (t)] + δE[X(t)Y (t)]. (177) 

As we can see the equations of the expected values correspond to the differential equations 
for the deterministic predator-prey. 

Simulation of a predator-prey process 

A simulation of the time portrait, phase portrait and variance of the predator-prey process 
can be found in Figure 10. 

2.3 Linearized Stochastic Predator-Prey Model 

Since the partial differential equation we obtained from the probability generating function 
is not readily solved, we will consider a stochastic version of the linearized Predator-Prey 
model. It may be easier to work with a linear function. It will be of interest to know how the 
linearized model behaves and how much it differs from the stochastic non linearized model. 
The linearized predator prey model of the previous section is given here as 

u 0(t) = − 
βγ 

v (178)
δ 

v 0(t) = 
αδ 

u. (179)
β 
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Figure 10: The initial populations 220 for the prey population and 300 for the predator 
population. The growth rates are α = 1, β = .003, γ = 1, and δ = .004. 

Letting (U(t),V(t)) be a bivariate nonnegative integer valued process, then we can mimic 
the growth rates in this linearized model as in the following table 

Transition 
(i, j) → (i + 1, j) 
(i, j) → (i − 1, j) 
(i, j) → (i, j + 1) 
(i, j) → (i, j − 1) 

Rate 
0 

βγ j
δ 
αδ i
β 

0 

Now we can visualize these transitions on the nonnegative integer lattice 
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#Ã 

i,j+1

"! 
0 

? βγ #Ã#ÃÂ¿0 δ j 
- ¾i-1,j i,j i+1,j

"!ÁÀ "!
6 

αδ i
β#Ã 

i,j-1

"! 

Again letting Pi,j (t) = P [U(t) = i, V (t) = j] and using these transition rates, we write the 
probability of being in some i,j state. The rate of change of probability for the linearized 
predator-prey model is obtained as 

βγ αδ βγ αδ 
Pij 
0 (t) = jPi+1,j (t) + iPi,j−1(t) − ( j + i)Pi,j (t). (180)

δ β δ β 

So if 

φ(r, s, t) = 
∞X∞X

Pi,j (t)r i j (181)s 
i=0 j=0 

is the probability generating function, then we have 

∂φ 
∂t 

(r, s, t) = 
∞X∞X

ij (t)r i jP 0 s (182). 
i=0 j=0 

By substituting in equation (180) into (182) we then have 

∞X∞X∂φ βγ αδ i j(r, s, t) = − ( j + i)Pi,j (t)r s 
∂t δ β 

i=0 j=0 

∞X∞X βγ 
jPi+1,j (t)r i sj+ 

δ 
i=0 j=0 

∞X∞X αδ 
iPi,j−1(t)r i sj . (183)+ 

β 
i=0 j=0 

Now we will expand the summations through the first term and combine terms to obtain 
the p.d.e. for this p.g.f. 

∞X∞X
jPi+1,j (t)r i sj − 

∞X∞Xβγ βγ i jjPi,j(t)r (184)s 
δ δ 

i=0 j=0 i=0 j=0 

by re-indexing 

= 
∞X∞X βγ 

jPi,j (t)r i−1 sj − 
∞X∞X βγ i jjPi,j(t)r (185)s 

δ δ 
i=1 j=0 i=0 j=0 
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As you can see in the first summation of equation (185) i=1 after re-indexing. This is a 
problem, we need to have i start at zero, so we must add and subtract that extra term that 
is missing, so equation (185) becomes 

∞ ∞ ∞ ∞XXXXβγ 1 i j−1 + jP0,j (t)s
j − jP0,j (t)s

j . (186)( − 1)s jPi,j (t)r s 
δ r 

i=1 j=0 j=0 j=0 

That extra term that is being added, goes into the first two summations but we are left with 
an extra summation term which must be subtracted from the p.d.e, thus equation (186) is 

∞Xβγ 1 ∂φ βγ 1 j( − 1)s − jP0j (t)s . (187)
δ ∂s δr r 

j=0 

X 

This process must be repeated with the next term, so 
P∞ P∞ αδ i j − αδ i js si=0 j=0 β iPi,j−1(t)r 

β iPi,j(t)r 
P∞ P∞ αδ i j+1 − αδ i j= s si=0 j=0 β iPi,j (t)r 

β iPi,j(t)r 
αδ P∞ i−1 j= 
β (s − 1)r 

P∞ 
i=0 j=0 iPi,j (t)r s 

αδ ∂φ = 
β (s − 1)r 

∂r . (188) 

We now have run into problems when trying to analyze this p.g.f. because we have this 
left over summation which we must include in our partial differential equation. Putting this 
together, we have 

∞
∂φ βγ 1 ∂φ αδ ∂φ βγ 1 j( − 1)s + (s − 1)r − jP0j (t)s (189)= . 
∂t δ ∂s β ∂r δr r 

j=0 

We want to calculate the expected values of each population so we must differentiate 
with respect to r and then s and evaluate each one at r=1 and s=1. Differentiating with 
respect to r gives us 

∂ ∂φ βγ 1 ∂φ βγ 1 ∂2φ αδ ∂φ 
∂t ∂r 

= − s 
δ r2 ∂s 

+ 
δ 

( 
r 
− 1)s 

∂s∂r 
+ 

β 
(s − 1) 

∂r 

+ 
αδ ∂2φ βγ 

+
X∞1 j(s − 1)r jP0j (t)s (190)

∂r2 δ r2β 
j=0 

∂ ∂φ βγ 1 ∂2φ βγ 1 ∂φ αδ ∂φ 
∂t ∂s 

= 
δ 

( − 1)s 
r ∂s2 

+ 
δ 

( − 1) + 
r ∂s 

r 
β ∂r 

X∞ 

∂r∂s δ r 
j=0 

αδ ∂2φ βγ 1 
j2P0j (t)s

j−1(s − 1)r − (191)+ 
β 

After evaluating the partial at r=1 and s=1, we end up with the expected value of the U 
population and the expected value of the V population. 
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∞
d βγ 

E[U(t)] = − (E[V (t)] − 
X 

jP0j (t)) (192)
dt δ 

j=0 

∞ 
d αδ βγ 

E[V (t)] = − E[U(t)] − 
X 

j2P0j (t) (193)
dt β δ 

j=0 

These expected values compare to the linearized predator-prey model, where we realize 
that each equation’s growth rate is in respect to the other population. However we have two 
left over summations. Since 

P0j (t) = P (U(t) = 0, V (t) = j) (194) 

= P (V (t) = j|U(t) = 0) P (U(t) = 0) (195) 

If x̄ is not an integer, then U(t) = X(t) − x̄ is an integer 

P (U(t) = 0) = P (X(t) − x̄ = 0) = P (X(t) = x̄) = 0. (196) 

For the expected value of the y population the argument for that left over summation is the 
same. 

P0j (t) = P (U2(t) = 0, V 2(t) = j) (197) 

= P (V 2(t) = j|U2(t) = 0
¢ 
P (U2(t) = 0) (198) 

If x̄ is not an integer then 

P (U2(t) = 0) = P ((X(t) − x̄)2 = 0) = P (X(t) = x̄) = 0 (199) 

Simulation of a linearized predator prey process 

A simulation of the time portrait, phase portrait and variance of the linearized predator-prey 
process can be found in Figure 11. 

2.4 Classic Competing Hunters Model 

Now we will consider a classical model describing the interaction between two similar species 
that compete for a common resource. 

The model assumptions, simplifications, and notation. 

1. There are two species interacting: a type ‘A’ species x and a type ‘B’ species y. For the 
purposes of this model no other species interact with these two. 
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Figure 11: The initial populations are 220 for the prey population and 300 for the predator 
population. The growth rates are α = 1, β = .003, γ = 1, and δ = .0041. 

2. In the absence of one of the species, the other exhibits pure exponential growth. In 
particular dx = αx where α > 0 and dy = γ y where γ > 0. Implicit in this assumption 

dt dt 
is that there is sufficient food and space to allow either species to grow indefinitely. 

3. When the two species are in the presence of one other, each population will decrease at 
a rate proportional to the product of the two populations. Thus, extinction is certain 
for at least one of the populations. 

dx 
dt 

= αx − βxy (200) 

dy 
dt 

= γy − δxy (201) 

where α, β, γ, δ are growth rates. 
Factoring gives 

dx 
dt 

= x(α − β y) 

dy 
dt 

= y(γ − δ x). 
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Phase plane of competing hunters model 
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Figure 12: The initial populations are 100 for Hunters 1 population and 72 for Hunters 2 
population. The growth rates are α = 1, β = .003, γ = 2.43, and δ = .01 

The equilibrium points (0, 0) and (γ/δ, α/β) are the same as in our predator-prey model. 
A sample phase plane is shown in Figure 12. Naturally, we are not interested in the (0, 0) 
solution. The (γ/δ, α/β) solution has a saddle point of trajectories about it. Jacobian 
analysis determines this. To help in the analysis of this model we will have to linearize the 
competing hunters equations. 

F (x, y) = αx − βxy (202) 

G(x, y) = γy − δxy (203) 

We will replace these functions with their Taylor series approximations. Here is the 
linearization of both populations at the critical point (x̄, ȳ) 

∂F ∂F 
F (x, y) = F (x̄, ȳ) + (x̄, ȳ)(x − x̄) + (x̄, ȳ)(y − ȳ) (204)

∂x ∂y 

∂G ∂G 
G(x, y) = G(x̄, ȳ) + (x̄, ȳ)(x − x̄) + (x̄, ȳ)(y − ȳ). (205)

∂x ∂y 

Here u and v is the distance from x and y to the critical point, x̄, ȳ  that is 

u = x − x̄ (206) 

v = y − ȳ  (207) 

We use u and v to obtain new functions of the two populations for the linearized form 

du ∂F ∂F ≈ + (x̄, ȳ)u + (x̄, ȳ)v (208)
dt ∂x ∂y 
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dv ∂G ∂G ≈ + (x̄, ȳ)u + (x̄, ȳ)v (209)
dt ∂x ∂y 

The partials with respect to x and y for both functions are 

∂F 
= α − βy (210)

∂x 
∂F 

= −βx (211)
∂y 
∂G 

= −δy (212)
∂x 
∂G 

= γ − δx (213)
∂y 

The critical point is (γ
δ , 

α
β ) and when we substitute this into the Jacobian we have 

−βγ γ α 
µ 

0 
¶

J( , ) = −αδ 
δ (214)

δ β 0
β 

After solving the Jacobian we end up with two differential equations, u’(t) and v’(t) 

du βγ 
= u 0 = − v (215)

dt δ 
dv αδ 

= v 0 = − u (216)
dt β 

The chain rule from calculus implies that 

du du dt 
= ;

dv dt dv 
thus 

du γβ2 v 
= . 

dv αδ2 u 
so 

αδ2u du = γβ2 v dv. 

Integrating both sides yields 
αδ2u2 γβ2dv2 

= + C. 
2 2 

which upon rearrangement gives 
2 2 2 2αδ2u γβ2v u v − = C or − = C. 

2 2 β2γ αδ2 

Substituting to get back our to our original variables yields 
¡
x − γ ¢2 (y − α )2 

δ − β 
= C. 

β2γ αδ2 

This is, of course, the equation for an hyperbola centered at the fixed point. The implication 
is that close to the fixed point, the trajectories look like hyperbolas; which confirms our 
prior determination that the fixed point was a saddle. Indeed, close to the fixed point the 
trajectories are hyperbolas, further away they still bend about the fixed point, but with a 
less defined shape. 
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Figure 13: The initial populations are 100 for Hunters 1 population and 72 for Hunters 2 
population. The growth rates are α = 1, β = .003, γ = 2.43, and δ = .01 

2.5 Stochastic Competing Hunters Model 

Let X(t) be the size of one of the hunter’s population at time t and Y (t) be the size of 
the other at time t. In the model to be formulated, it is now assumed that instead of a 
(deterministic) rate of hunters births and deaths, there is a probability of a hunter birth or 
death. Thus X(t) and Y (t) are time dependent random variables. 

Let the probability of there being i first hunters and j second hunters at time t be denoted 
by 

Pi,j (t) = P [X(t) = i, Y (t) = j], for i = 0, 1, 2, . . . , j = 0, 1, 2, . . . . 

As we have done before, births and deaths in this process occur proportional to the 
population size. We assume that the infinitesimal probability of an individual birth in the 
first hunter population during the small time interval Δt is αiΔt + o(Δt), where α > 0 is 
the birth rate of the first hunter. Similarly, we assume that the infinitesimal probability 
of an individual birth in the second hunter population during the small time interval Δt is 
γjΔt + o(Δt), where δ > 0 is the death rate of the second hunter. 

To mimic the deterministic model interaction term, we assume that the infinitesimal 
probability of a death in the first hunter’s population occuring during Δt is βijΔt + o(Δt), 
where β > 0 is the death rate of the first hunter. Similarly, a death in the second hunter’s 
population occurs during Δt with infinitesimal probability δijΔt + o(Δt), with γ > 0. These 
rates are summarized in the following table. 

49 



Transition 
(i, j) → (i + 1, j) αi 
(i, j) → (i − 1, j) βij 
(i, j) → (i, j + 1) γj 
(i, j) → (i, j − 1) δij 

Rate 

These transitions occur on the nonnegative integer lattice and can be visualized in the 
following way: 

#Ã 

i,j-1

"! 
γ(j − 1) 

#ÃÂ¿? #Ãα(i − 1) β(i + 1)j 
- ¾i-1,j i,j i+1,j

"!ÁÀ "!
6 

δ(j + 1)i#Ã 

i,j+1

"! 

The standard argument using the forward Kolmogorov equations is used to obtain Pi,j (t), 
by considering the probability Pi,j (t + Δt). This probability is obtained as the sum of the 
probabilities of the following mutually exclusive events: 

a) There are i first hunters and j second hunters by time t and no birth or deaths of either 
species occur in (t, t + Δt). 

b) There are i − 1 first hunters and j second hunters by time t and a birth occurs in the 
first hunters population in (t, t + Δt). 

c) There are i first hunter and j − 1 second hunters by time t and a birth occurs in the 
second hunters population in (t, t + Δt). 

d) There are i + 1 first hunters and j second hunters by time t and a death occurs in the 
first hunters population in (t, t + Δt). 

e) There are i first hunters and j +1 second hunters and a death occurs in the second hunters 
population in (t, t + Δt). This gives 

P 0 (t) = α(i − 1)Pi−1j (t) + β(i + 1)jPi+1j (t) + γ(j − 1)Pij−1(t)ij 

+δ(j + 1)iPij+1(t) − (αi + βij + γj + δij)Pij (t) (217) 
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Just as in the stochastic predator prey model, this doubly infinite system of differential 
equations is not easily solved and in fact, it appears to be an open problem to obtain its 
closed form solution. Letting, as always, 

φ(r, s, t) = 
∞X∞X

Pi,j (t)r i j (218)s 
i=0 j=0 

be the probability generating function for this system. We do not have Pij(t) but we do have 
P 0 (t) so we plug that into the p.g.f.ij 

∂φ 
∂t 

(r, s, t) = 
∞X∞X

P 0 si,j (t)r i j (219) 
i=0 j=0 

By plugging in equation(217) into equation (219) we then have 

∂φ 
= − 

∞X∞X 

∂t 
i=0 j=0 

i j(αi + βij − γj + δij)Pij (t)r s 

∞X∞X
α(i − 1)Pi−1j (t)r i sj+ 

i=0 j=0 

∞X∞X
β(i + 1)jPi+1j (t)r i sj+ 

i=0 j=0 

∞X∞X
γ(j − 1)Pij−1(t)r i sj+ 

i=0 j=0 

∞X∞X
δ(j + 1)iPi,j+1(t)r i sj+ 

i=0 j=0 

(220) 

We expand each of these sums as we did in the stochastic predator-prey model. The 
analysis is virtually identical here and will be omitted. 
We obtain 

∂φ ∂φ ∂φ ∂φ 
= α(r − 1)r + γ(s − 1)s + (rδ(s − 1) + (r − 1)sβ) . (221)

∂t ∂r ∂s ∂s∂r 

The expected size of the Hunter ’A’ population is given by 

∂φ 
∂r 

¯̄
¯̄
 

∂φ 
= α − β 

∂2φ 
∂r ∂r∂s r=s=1 

= αE[X(t)] − βE[X(t)Y (t)]. (222) 

Similarly, the Hunter ’B’ population is 

∂φ 
∂s 

¯̄
¯̄
 

∂φ 
= γ − δ 

∂2φ 
∂s ∂r∂s r=s=1 

= γE[Y (t)] − δE[X(t)Y (t)]. (223) 
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As we can see the equations of the expected values correspond to the differential equations 
for the deterministic competing hunters model. 

Simulation of a competing hunters process 

A simulation of the time portrait, phase portrait and variance of the competing hunters 
process can be found in Figure 14. 
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Figure 14: The initial populations are 200 for Hunters 1 population and 700 for Hunters 2 
population. The growth rates are α = 2.55, β = .006, γ = 2.2, and δ = .02. 

2.6 Linearized Competing Hunters Model 

Since the partial differential equation is not readily solved we will consider a stochastic 
version of the linearized competing hunters model. To linearize the Competing Hunters 
model we take the same approach as the predator-prey model. It may be easier to work with 
the linearize version. We will look at the behavior of the linearized competing hunters model 
and compare it to the non linearized stochastic model. The linearize competing hunters of 
the previous section is given here as 
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u 0(t) = − 
βγ 

v (224)
δ 

v 0(t) = − 
αδ 

u (225)
β 

Letting (U(t),V(t)) be a bivariate nonnegative integer valued process, then we can mimic 
the growth rates in this linearized model as in the following table 

Transition 
(i, j) → (i + 1, j) 0 
(i, j) → (i − 1, j) βγ j

δ 
(i, j) → (i, j + 1) 0 
(i, j) → (i, j − 1) αδ i

β 

Rate 

Now we can visualize these transitions 

#Ã 

i,j+1

"!αδ i
β 

? βγ #Ã#ÃÂ¿0 δ j 
- ¾i-1,j i,j i+1,j

ÁÀ"! 
6 

"! 

0#Ã 

i,j-1

"! 

We use these transition rates and can write the probability as we have before. 

βγ αδ βγ αδ 
Pij 
0 (t) = jPi+1,j (t) + iPi,j+1(t) − ( j + i)Pi,j (t). (226)

δ β δ β 

The p.d.e. of the p.g.f is 
∞

∂φ δα 1 ∂φ δα 1 i = r( − 1) − 
X 

iPi,0(t)r 
∂t β s ∂r β s 

i=0 
∞

βγ 1 ∂φ βγ 1 j+ ( − 1)s − 
X 

P0,j (t)s (227)
δ r ∂s δ r 

j=0 
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After re-indexing and solving for the p.d.e. we are left with two left over terms in 
this linearized version. We still want the expected values for both populations so we must 
differentiate the p.d.e. with respect to r and then s. 
Differentiating (227) with respect to r we end up with 

∞X∂ ∂ δα 1 ∂φ δα 1 βγ s ∂φ i−1 − 
δ r2 ∂s 

( − 1) − iPi,0(t)r= 
∂r ∂t β ∂r βs s 

i=0 
∞X ∂2φ 

∂r2 

βγ 1 
jP0,j (t)s

j + 
δα 

r(
1 − 1)+ 

δ r2 β s 
j=0 

βγ 1 ∂2φ 
+ ( − 1)s (228)

δ r ∂r∂s 

Differentiating (227) with respect to s we end up with 

∞X∂ ∂ δα r ∂φ δα 1 
= − + 

βγ 1 ∂φ i − 1)iPi,0(t)r (+ 
2 2∂s ∂t β s ∂r β s δ ∂s r 

i=0 

− 
βγ 1 
δ r 

∞X
jP0,j (t)s 

∂2φβγ 1j−1 − 1)s+ ( 
∂s2δ r 

j=0 

δα 1 ∂2φ 
+ r( − 1) (229)

β s ∂r∂s 

We evaluate each partial at r=1 and s=1 in order to get the expected value of each 
population 

¯̄
¯̄
 

∞X
iPi,0(t) − 

∞X∂ ∂φ 
∂r ∂t 

δα βγ ∂φ βγ 
+− jP0,j (t) (230)= 

β δ ∂s δ r=s=1 i=0 j=0 ¯̄
¯̄
 

∞X
iPi,0(t) − 

∞X∂ ∂φ 
∂s ∂t 

δα ∂φ δα βγ − jP0,j (t) (231)+= 
β ∂r β δ r=s=1 i=0 j=0 

The expected values for both populations are 

∞X
iPi,0(t) + 

∞Xd βγ δα 
dt 

E[U(t)] = − E[V (t)] − 
δ β 

βγ 
jP0,j (t) (232)

δ 
i=0 j=0 

∞X
iPi,0(t) − 

∞Xd δα δα βγ 
E[V (t)] = − E[U(t)] + jP0,j (t) (233)

dt β β δ 
i=0 j=0 

For the expected values of both populations we have four left over summations, which 
we have assume equal zero. We will use the same argument as before for the predator-prey 
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model. 

Pi0(t) = P (V (t) = 0, U(t) = i) (234) 

= P (U(t) = i|V (t) = 0) P (V (t) = 0) (235) 

If ȳ  is not an integer then 

P (V (t) = 0) = P (Y (t) − ȳ = 0) = P (Y (t) = ȳ) = 0 (236) 

P0j(t) = P (U(t) = 0, V (t) = j) (237) 

= P (V (t) = j|U(t) = 0) P (U(t) = 0) (238) 

If x̄ is not an integer then 

P (U(t) = 0) = P (X(t) − x̄ = 0) = P (X(t) = x̄) = 0 (239) 

Using this argument we can ignore each of these summations, and see that each expected 
value is in respect to the other population. 

Simulation of a linearized competing hunters process 

A simulation of the time portrait, phase portrait and variance of the linearized competing 
hunters process can be found in Figure 15. 

2.7 Polynomial - Two populations 

We can now generalize the proceeding sections by considering populations that are described 
by the differential equations 

dx 
= a(x, na)b(x, nb) − c(x, nc)d(x, nd) (240)

dt 

dy 
= e(x, ne)f(x, nf ) − g(x, ng)h(x, nh) (241)

dt 

Let X(t) and Y(t) be nonnegative, integer valued processes with transition described in 
the following table 

Transition 
i, j → i + 1, j 
i, j → i − 1, j 
i, j → i, j + 1 
i, j → i, j − 1 

Rate 
a(i, na)b(j, nb) 
c(i, nc)d(j, nd) 
e(i, ne)f(j, nf ) 
g(i, ng)h(j, nh) 

We must assume there is no emigration rate in either populations so that c0 = 0 = h0 

Then if 

Pi,j (t) = P [X(t) = i, Y (t) = j)|X(0) = 0] (242) 
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Figure 15: The initial populations are 200 for the Hunters 1 population and 700 for the 
Hunters 2 population. The growth rates are α = 2.55, β = .0061, γ = 2.2, and δ = .021. 

we can derive the forward Kolmogorov equations in the usual manner specifically, 

Pi,j 
0 (t) = a (i − 1, na) b (j, nb) Pi−1,j (t) + c (i + 1, nc) d (j, nd) Pi+1,j (t) 

+ e (i, ne) f (j − 1, nf ) Pi,j−1 (t) + g (i, ng) h (j + 1, nh) Pi,j+1 (t) 

− (a (i, na) b (j, nb) + c (i, nc) d (j, nd) 

+ e (i, ne) f (j, nf ) + g (i, ng) h (j, nh))Pi,j (t) (243) 

Letting 

∞ ∞ 
i jφ(r, s, t) = 

X X 
Pi,j (t)r s (244) 

i=0 j=0 
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be the probability generating function, we have 

∂φ 
= 

∞X∞X 

∂t 
i=0 j=0 

i jP 0 (t)r si,j 

∞X∞X
a (i − 1, na) b (j, nb) Pi−1,j (t) r i sj= 

i=0 j=0 

∞X∞X
c (i + 1, nc) d (j, nd) Pi+1,j (t) r i sj+ 

i=0 j=0 

∞X∞X
e (i, ne) f (j − 1, nf ) Pi,j−1 (t) r i sj+ 

i=0 j=0 

∞X∞X
g (i, ng) h (j + 1, nh) Pi,j+1 (t) r i sj+ 

i=0 j=0 

∞X∞X
− (a(i, na)b(j, nb) + c (i, nc) d (j, nd) 

i=0 j=0 

+ e (i, ne) f (j, nf ) + g (i, ng) h (j, nh))Pi,j (t)r i sj . (245) 

To simplify this expression for ∂φ we need to evaluate series of the form
∂t 

∞X∞X
injmPi,j (t)r i sj (246) 

XX 

i=0 j=0 

in terms of the p.g.f. φ(r, s, t). Using equation (80), we can write the sum in equation as 

n m∞X∞X ∞X∞X
i j i jinjmPi,j (t)r S2(n, k)[i]kS2(m, l)[j]lPi,j (t)rs = s 

XX 
i=0 j=0 i=0 j=0 k=0 l=0 

n m ∞X∞X
k l i−k j−l sS2(n, k)[i]kS2(m, l)[j]lPi,j(t)r= r s 

XX 
k=0 l=0 i=0 j=0 

n m 
lS2(m, l) 

∞X∞X
kS2(n, k) i−k i−l s[i]k[j]lPi,j(t)r= r s 

XX 
k=0 l=0 i=0 j=0 

n m 
∂k+lφkS2(n, k) lS2(m, l) k l = r s r s 
∂rk∂sl 

XX 
k=0 l=0 
n m 

∂k+lφk k l s lS2(m, l)S2(n, k) r s (247)= r 
∂rk∂sl 

k=0 l=0 
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So, using this expression, we can write the birth rate term of the prey as 

n mXX
i j = 

∞X∞X
a(i − 1, na)b(j, nb)Pi−1,j (t)r s 

∞X∞X
ak(i − 1)kblj

lPi−1,j (t)r i sj 

i=0 j=0 i=0 j=0 k=0 l=0 
n mXX∞X∞X

i+1 jaki
kblj

lPi,j (t)r s= 
i=0 j=0 k=0 l=0 

n mXX ∞X∞X
ikjlPi,j (t)r i sjakbl = r 

X 

k=0 l=0 i=0 j=0 

n m lXX kX ∂i+j φ i jakbl S2(k, i)S2(l, j)= r r s . 
∂ri∂sj 

XX 

k=0 l=0 i=0 j=0 

(248) 

Similarly the death rate terms is 

n m∞X∞X ∞X∞X
i j ck(i + 1)kdlj

lPi+1,j (t)r i sjc(i + 1, nc)d(j, nd)Pi+1,j (t)r s = 

XX 
i=0 j=0 i=0 j=0 k=0 l=0 

n m∞X∞X
i−1 jcki

kdlj
lPi,j (t)r s= 

XX 
i=0 j=0 k=0 l=0 

n m ∞X∞X1 
ikjlPi,j(t)r i sjckdl = 

XXXX 

r 
k=0 l=0 i=0 j=0 

n m k l 
∂i+j φ1 i jckdl S2(k, i)S2(l, j)= r s 
∂ri∂sjr 

k=0 l=0 i=0 j=0 

(249) 

In a very similar manner we do this same procedure for the next six terms. Combining all 
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of these expressions in the representation for ∂φ gives 
∂t 

∂φ i j= (r − 1) 
X X 

a (i, na) b (j, nb) Pi,j (t) r s 

X X∞∞ 

∞∞ 

∂t 
i=0 j=0 µ

1 
¶

− 1 
r 

i jc (i, nc) d (j, nd) Pi,j (t) r+ s 
i=0 j=0 

i j+ (s − 1) 
X X 

e (i, ne) f (j, nf ) Pi,j (t) r s 
i=0 j=0 

X X∞ 

∞ 

∞ 

∞ 

µ
1 

¶
− 1 

s 
i jg (i, ng) h (j, nh) Pi,j (t) r+ s 

i=0 j=0 

na nb i j 
∂h+kφ h k = (r − 1) 

X X 
aibj 

X X 
S2 (na, h) S2 (nb, k) r s 

∂rh∂sk 
i=0 j=0 h=0 k=0 

nc nd i j 
∂h+kφ 

+ 

µ
1 − 1

¶ X X 
cidj 

X X 
S2 (nc, h) S2 (nd, k) r h s k 

r ∂rh∂sk 
i=0 j=0 h=0 k=0 

ne nf i j 
∂h+kφ h k+(s − 1) 

X X 
eifj 

X X 
S2 (ne, h) S2 (nf , k) r s 

∂rh∂sk 
i=0 j=0 h=0 k=0 

ng nh i j 
∂h+kφ h k+ 

µ
1 − 1

¶ X X 
gihj 

X X 
S2 (ng, h) S2 (nh, k) r s 

s ∂rh∂sk 
i=0 j=0 h=0 k=0 

(250) 

Using this expression we can, however obtain some useful information. We can find the 
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expected population sizes, we take the partial with respect to r, we obtain 

na nb i j 
∂h+kφ∂ ∂φ h k = 

X X 
aibj 

X X 
S2 (na, h) S2 (nb, k) r s 

∂r ∂t ∂rh∂sk 
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nb i j
∂ 
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aibj 

X X 
S2 (na, h) S2 (nb, k) r s 

∂r ∂rh∂sk 
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∂h+kφ1 h k− 

X X 
cidj 

X X 
S2 (nc, h) S2 (nd, k) r s 
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i=0 j=0 h=0 k=0 " 
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h k+ 
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¶ 
∂ X X 

cidj 
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∂ X X 
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# 

∂r ∂rh∂sk 
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µ
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¶ 
∂ X X 

gihj 

X X 
S2 (ng, h) S2 (nh, k) r s . (251) 

s ∂r ∂rh∂sk 
i=0 j=0 h=0 k=0 

Interchanging the order of the derivatives and evaluating this expression at r=s=1 we have 

na nb i j 
∂h+kφd 

E[X(t)] = 
X X 

aibj 

X X 
S2 (i, h)S2 (j, k) |r=s=1

dt ∂rh∂sk 
i=0 j=0 h=0 k=0 

nc nd i j 
∂h+kφ − 

X X 
cidj 

X X 
S2 (i, h)S2 (j, k) |r=s=1. 
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i=0 j=0 h=0 k=0 

(252) 

Using the relation in equation (89) we have 

x(x − 1)(x − 2)...(x − n + 1)(y)(y − 1)(y − 2)...(y − m + 1) 
n m 

= 
X X 

S1 (n, r) S1 (m, s) XrY s . (253) 
r=0 s=0 

Recall that φ is a p.g.f. so the partial derivative at r=1 and s=1 becomes 

∂h+kφ 
= E [X(X − 1)(X − 2)...(X − n + 1)(Y )(Y − 1)(Y − 2)...(Y − m + 1)] 

∂rh∂sk 

n m 
" # 

= E 
X X 

S1 (n, r) S1 (m, s) XrY s (254) 
r=0 s=0 
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Substituting equation (254) into equation (252) gives us 

na nb i j h k
∂ ∂φ 

" # 

|r=s=1 = 
X X 
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(255) 

Since the stirling numbers of the first kind S1(h, h0) and S1(k, k0) are just constants, we are 
able to pull them out of the expected value so now this becomes 

na nb i j h k
∂ ∂φ |r=s=1 = 

X X 
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Xh0 Y k
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i 
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(256) 

We are able to reduce this expression because there is a very useful orthogonal relation 
between Stirling numbers of the first kind and second kind. Using the relation in equation 
(95) we are able to combine Stirling numbers of the first kind and second kind 

na nb i h j k 

= 
X X 

aibj 

X X 
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(257) 

After combining them, the equation reduces to 

na nb nc nd 

= 
X X 

aibjE 
£
X iY j 

¤− 
X X 

cidj E 
£
X iY j 

¤ 
(258) 

i=0 j=0 i=0 j=0 

This process can also be applied to verify the expected value of the prey term by differenti-
ating with respect to s. This will result in 

ne nf ng nh 

= 
X X 

eifj E 
£
X iY j 

¤− 
X X 

gihj E 
£
X iY j 

¤ 
(259) 

i=0 j=0 i=0 j=0 

These two equations correspond with the deterministic model. 
We can summarize the preceding as the following Theorem: 
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Theorem 2.1. Let X(t) and Y(t) be nonnegative, integer valued processes with transition 
described in the following table 

Transition 
i, j → i + 1, j 
i, j → i − 1, j 
i, j → i, j + 1 
i, j → i, j − 1 

Rate 
a(i, na)b(j, nb) 
c(i, nc)d(j, nd) 
e(i, ne)f(j, nf ) 
g(i, ng)h(j, nh) 

we must assume there is no emigration from either populations c0 = 0 = h0 

if 

and 

Pi,j (t) = P [X(t) = i, Y (t) = j)|X(0) = 0] (260) 

∞ ∞
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(261) 

Then 
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(262) 

where S2(na, h) and S2(nb, k) are Stirling numbers of the second kind 
and using this relation 

= 

x(x − 1)(x − 2)...(x − n + 1)(y)(y − 1)(y − 2)...(y − m + 1) 
n mX X 

S1 (n, r) S1 (m, s) XrY s 

r=0 s=0 

(263) 
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it becomes 

na nb i h j k 

= 
X X 

aibj 
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(264) 

The expected value E[X(t)] of the integer valued processes of X(t) and Y(t) satisfies the 
differential equation 

na nb nc nd 

= 
X X 

aibjE 
£
X iY j 

¤− 
X X 

cidj E 
£
X iY j 

¤ 
(265) 

i=0 j=0 i=0 j=0 

ne nf ng nh 

= 
X X 

eifj E 
£
X iY j 

¤− 
X X 

gihj E 
£
X iY j 

¤ 
(266) 

i=0 j=0 i=0 j=0 

3 Future Goals 

We briefly explored a plethora of avenues related to stochastic processes. Given a great deal 
more time, these are a few of the things we would like to dissect. 

Linearized Models 

We would like to further explore the effects of linearizing population models. A generalized 
look at the error between linearized stochastic models and linearized deterministic models 
with the triangle inequality has been examined, but could bear a more detailed scrutiny. 

K Populations with Polynomial Growth Rates 

After a brief analysis, we are certain the polynomial growth rates can be extended to an 
arbitrary number of populations all interacting. Given more time and lots of paper, this 
belief will be realized. 

Taylor Expansion of Transcendental Functions 

Not all growth models are in the form of polynomials, some of them contain natural logs – 
such as the well-known Gompertz growth model. Taylor expansions of these functions would 
present these functions as polynomials. A detailed analysis 

Time to Extinction 

Some time was dedicated to generalizing the time to extinction theorem to arbitrary poly-
nomial growth rates. Immediate results were unclear but worth another more intensive look. 
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Steady State of Predator Prey 

Similar to Time to Extinction, some hard time was dedicated to solving the bivariate recur-
rence relationship of predator-prey steady state probabilities resulting in another repulsive, 
though ordered, relationship. 

Models Expected to Go Extinct Drop Below Deterministic 

There is a proof in Allen’s book that the stochastic logistic process is equal to or less than 
the deterministic. Though the approach used did not lend itself well to proving the same for 
an Allee model, we feel that stochastic processes of even powers could us e a similar approach 
to state that their expectations cannot be more than their respective deterministic models. 

Spatial Predator-Prey Modeling 

The most entertaining of the competing models is certainly the curious oscillations of the 
predator-prey model. Some brief simulations of two interacting predator-prey models yielded 
some enticingly colorful graphs. Armed with a general formula for K interacting populations, 
we will be able to crack this wide open. 

Variance of Stochastic Processes 

The variance is well defined for the more simple stochastic processes – Birth, Death, Birth-
Death and Birth-Death-Immigration. Simulations showed some well-behaved activity with 
a great deal of data. We would like to devote more time and computer cycles to exploring 
the variance. 

A MATLAB Code 

Some of the code we used in generating our results has been included for your perusal. 
Included are three chunks of code that will simulate a single population with polynomial 
birth and death rates, a predator-prey process, and a linearized competing hunters process. 

Single Population Stochastic 

% Stochastic Process of Single Population with Polynomial Growth Rate 
% AMSSI 2005 - Team NERJ 
% Public Domain. Mess with this as much as you want. 
% poly2str function thanks to http://home.online.no/~pjacklam/ 
% 
% birth = Birth polynomial with powers in descending order 
% death = Death polynomial with powers in descending order 
% initPop = Initial population 
% 
% Run as: 
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% singlepop([coeff of birth poly],[coeff of death poly],initial pop, # trials 

function singlepop(b,d,initPop,trials) global birth death birth = b; 
death = d; 

maxSteps = 700; % Maximum steps for simulation 
numSteps = 60; % Number of graph points to quantize to 
numPaths = 3; % Number of sample paths to plot with average 

% First we generate the population growths and times in their own cell 
fprintf(’Generating %d trials’, trials); 
tic; % Start timer 
A=cell(1,trials); % Cell array to avoid a sparse matrix 
for i = 1:trials 

pop = zeros(1,maxSteps); % Initialize population and time vectors 
t = zeros(1,maxSteps); 
pop(1) = initPop; % Fill in initial population and time 
t(1) = 0; 
j = 1; % j = Step counter for current simulation 
while (pop(j) > 0 & j < maxSteps) 

% Evaluate birth and death polynomials with current population 
popB = polyval(birth,pop(j)); 
total = popB+polyval(death,pop(j)); 
% Figure out which window we’re in and adjust population 
if (rand < popB/total) 

pop(j+1) = pop(j) + 1; 
else 

pop(j+1) = pop(j) - 1; 
end 
% Generate new time step and add to current time 
t(j+1) = -log(rand)/total + t(j); 
j = j+1; 

end 
A{i}=[pop(1:j) ; t(1:j)]; % Save pop and time vectors in a cell 
if (mod(i,fix(trials/10))==0) 

fprintf(’.’); % Print out progress dot 
end 

end 

% Keep track of the lengths of runs and num steps 
timeLen = zeros(1,trials); % Make a time length vector 
stepLen = zeros(1,trials); % Make a step length vector 
for i=1:trials 

timeLen(i) = A{i}(2,end); 
stepLen(i) = length(A{i}); 
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end 

% We look at the trials up until the first one to maxSteps ran out of time. 
maxStepLens=find(stepLen==max(stepLen)); 
maxTime=min(timeLen(maxStepLens)); 
numExtinct=trials; % First assume everything went extinct 
if (max(stepLen) == maxSteps) % Check how many made it to maxSteps 

numExtinct = trials-length(maxStepLens); 
end 
fprintf(’%.2f secs\n’,toc); % Log time of the most intensive part 

% Now we quantize the data into a discrete time interval 
plotTime = linspace(0,maxTime,numSteps); % Time vector to plot 
plotPop = zeros(trials,numSteps); % Pop vector to plot 
plotPop(:,1) = initPop; % Initialize Pop vector 

fprintf(’Quantizing’); 
for i = 1:trials % i = Current trial 

j = 2; % j = Current quantized step 
k=1; % k = Current time step of actual data 
while (k < length(A{i}) & j <= numSteps) 

% If next actual time > quantized step 
if (A{i}(2,k+1) >= plotTime(j)) 

plotPop(i,j) = A{i}(1,k); % Record population as current 
j = j+1; 

else 
k = k+1; 

end 
end % End trial 
if (mod(i,fix(trials/10))==0) 

fprintf(’.’); % Print out progress dot 
end 

end % End quantizing 

% We take non-zero population entries and find average and variance 
fprintf(’\nFinding Mean and Variance’); 
varPop=zeros(1,numSteps); % Initialize variance and average vectors 
avgPop=zeros(1,numSteps); for i=1:numSteps 

w = plotPop(:,i); % w = Use every population run 
avgPop(i)=mean(w); % Average non-zero values 
varPop(i)=var(w); % Variance of non-zero values 
if (mod(i,fix(numSteps/10))==0) 

fprintf(’.’); % Print out progress dot 
end 

end 
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% Plot the graphs and label ’em proper 
fprintf(’\nPlotting.\n’); 
idxPaths = 1:ceil(trials/numPaths):trials; % Indices of paths to show 
plotPaths = plotPop(idxPaths,:); % Sample paths to plot 
maxPop = max([max(plotPaths) avgPop]); % Max population for y axis 
maxTime = max(plotTime); figure(’Position’,[100 100 500 500]); 

subplot(2,1,1); hold off 
plot(plotTime,avgPop,’k’,’LineWidth’,2); % Plot the average 
hold on 
[t,Y]=ode45(@diffpop,plotTime,initPop); % Plot deterministic 
plot(t,Y,’r--’,’LineWidth’,2); 
stairs(plotTime,plotPaths’,’:’); % Plot the sample paths 
axis([0 maxTime 0 maxPop]); % Set axes and labels 
set(gca,’FontName’,’Courier New’); xlabel(’Time’,’FontName’,’Courier 
New’); ylabel(’Population’,’FontName’,’Courier New’); 
legend(’Average Stochastic’,’Deterministic’,’Sample Paths’,... 

’Location’,’NorthWest’); 
title(sprintf(’Single Population\n%d Trials\nx’’ = %s - (%s)’,... 

trials,poly2str(birth),poly2str(death))); 

subplot(2,1,2); 
plot(plotTime,varPop,’k’,’LineWidth’,2); % Plot variance 
axis([0 maxTime 0 max(varPop)]); set(gca,’FontName’,’Courier New’); 
xlabel(’Time’,’FontName’,’Courier New’); 
ylabel(’Variance’,’FontName’,’Courier New’); 

fprintf(’Took %.2f secs\n’,toc); % Log time 

function dydx = diffpop(t,x) global birth death dydx = 
polyval(birth,x)-polyval(death,x); 

Predator Prey Process 

% Stochastic Process of Predator Prey 
% AMSSI 2005 - Team NERJ 
% Public Domain. Mess with this as much as you want. 
% This is not as well documented or coded as singlepop.m, enjoy! 
% 
% birth = Birth polynomial with powers in descending order 
% death = Death polynomial with powers in descending order 
% initPop = Initial population 
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function predprey(trials) 

maxSteps = 80000; 
numSteps = 1000; % Number of steps 

% x’ = alpha*x - beta*x*y Prey 
initprey = 220; % Initial population for prey 
alpha = 1; % Birth rate 
beta = .003; % Interaction (death) 

% y’ = -gamma*y + delta*x*y Predators 
initpred = 300; % Initial population for predators 
gamma = 1; % Starvation rate 
delta = .004; % Hunting rate 

fprintf(’Starting %d trials...’, trials); 
tic; % Start timer 
last = 0; A=cell(1,trials); for b = 1:trials 

prey = zeros(1,maxSteps); % Initialize vectors 
pred = zeros(1,maxSteps); 
t = zeros(1,maxSteps); 
prey(1) = initprey; % Initialize populations and time 
pred(1) = initpred; 
t(1) = 0; 
a = 1; 
while (prey(a) > 0 && pred(a) > 0 && a < maxSteps) 

preyB = alpha*prey(a); 
preyD = beta*prey(a)*pred(a); 
predB = delta*pred(a)*prey(a); 
predD = gamma*pred(a); 
total = preyB+preyD+predB+predD; 

r1 = rand; 
r2 = rand; 
% Figure out which window we’re in. 
if (r1 < preyB/total) 

pred(a+1) = pred(a); 
prey(a+1) = prey(a) + 1; 

elseif (r1 >= preyB/total && r1 < (preyB + preyD)/total) 
pred(a+1) = pred(a); 
prey(a+1) = prey(a) - 1; 

elseif (r1 >= (preyB + preyD + predB)/total) 
pred(a+1) = pred(a) - 1; 
prey(a+1) = prey(a); 

else 
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pred(a+1) = pred(a) + 1; 
prey(a+1) = prey(a); 

end 
t(a+1) = -log(r2)/total + t(a); 
a = a+1; 

end 
A{b}=[prey(1:a) ; pred(1:a) ; t(1:a)]; % Save in a cell 

end 

timeLen = zeros(1,trials); % Make a time length vector 
stepLen = zeros(1,trials); % Make a step length vector 
for i=1:trials 

timeLen(i) = A{i}(3,end); 
stepLen(i) = length(A{i}); 

end 

% We look at the trials up until the first one to maxSteps ran out of time. 
maxStepLens=find(stepLen==max(stepLen)); 
maxTime=min(timeLen(maxStepLens)); 
numExtinct=trials; % First assume everything went extinct 
if (max(stepLen) == maxSteps) % Check how many made it to maxSteps 

numExtinct = trials-length(maxStepLens); 
end 
fprintf(’%.2f secs\n’,toc); % Log time of the most intensive part 

t = linspace(0,maxTime,numSteps); % time vector 
prey = zeros(trials,numSteps); % prey vector 
pred = zeros(trials,numSteps); % pred vector 
prey(:,1) = initprey; pred(:,1) = initpred; 
% Now we quantize the data into a discrete time interval 
fprintf(’Quantizing...\n’); 
for i = 1:trials % i = current trial 

j = 2; % j = current quantized time step 
k=1; % k = current time step of actual data 
trialSteps = length(A{i}); 
while (k < trialSteps & j <= numSteps) 

% If next actual time > quantized step 
if (A{i}(3,k+1) >= t(j)) 

prey(i,j) = A{i}(1,k); % Record population as current 
pred(i,j) = A{i}(2,k); 
j = j+1; 

else 
k = k+1; 

end 
end % end trial 
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end % end quantizing 

% We take population entries and find average and variance 
fprintf(’Finding Mean and Variance...\n’); 
varprey=zeros(1,numSteps); varpred=zeros(1,numSteps); for 
a=1:numSteps 

w=prey(:,a); 
avgprey(a)=mean(w); 
varprey(a)=var(w); 
v=pred(:,a); 
avgpred(a)=mean(v); 
varpred(a)=var(v); 

end 

fprintf(’Plotting.\n’); maxvar=max(max(varprey),max(varpred)); 
maxavg=max(max(avgprey),max(avgpred)); 

subplot(2,2,1); hold off 
plot(t,avgprey,’r’,t,avgpred,’b’); % Time vs. populations 
axis([0,max(t),0,maxavg]); xlabel(’Time’); ylabel(’Population 
Size’); legend(’Prey’,’Predator’); 

subplot(2,2,2); % Population phase plane 
hold off plot(avgprey,avgpred); 
axis([min(avgprey),max(avgprey),min(avgpred),max(avgpred)]); 
xlabel(’Prey’); ylabel(’Predator’); 

subplot(2,1,2); % Variance 
hold off plot(t,varprey,’r’,t,varpred,’b’); 
axis([0,max(t),0,maxvar]); xlabel(’Time’); ylabel(’Variance’); 
legend(’Prey’,’Predator’); 

subplot(2,2,1); % Print time taken 
title(sprintf(’Predator vs. Prey\n%d Trials/%d Extinctions’,... 

trials,numExtinct)); 

Linearized Competing Hunters Process 

% Stochastic Process of Linearized Competing Hunters 
% AMSSI 2005 - Team NERJ 
% Public Domain. Mess with this as much as you want. 
% This is not as well documented or coded as singlepop.m, enjoy! 
% 
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% birth = Birth polynomial with powers in descending order 
% death = Death polynomial with powers in descending order 
% initPop = Initial population 
function comphuntlinear(trials) 

maxSteps = 3000; 
numSteps = 400; % Number of steps 

% x’ = alpha*x - beta*x*y Hunters 1 
inithunt1 = 200; % Initial population for hunters 1 
alpha = 2.55; % Birth rate 
beta = .0061; % Interaction (death) 

% y’ = gamma*y - delta*x*y Hunters 2 
inithunt2 = 700; % Initial population for hunters 2 
gamma = 2.2; % Starvation rate 
delta = .021; % Hunting rate 

crithunt1 = gamma/delta; crithunt2 = alpha/beta; inithunt1 = 
inithunt1 - crithunt1; inithunt2 = inithunt2 - crithunt2; 

fprintf(’Starting %d trials...’, trials); 
tic; % Start timer 
last = 0; A=cell(1,trials); for b = 1:trials 

hunt1 = zeros(1,maxSteps); % Initialize vectors 
hunt2 = zeros(1,maxSteps); 
t = zeros(1,maxSteps); 
hunt1(1) = inithunt1; % Initialize populations and time 
hunt2(1) = inithunt2; 
t(1) = 0; 
a = 1; 
while (hunt1(a) ~= 0 && hunt2(a) ~= 0 && a < maxSteps) 

hunt1D = beta*gamma/delta*abs(hunt2(a)); 
hunt2B = alpha*delta/beta*abs(hunt1(a)); 
total = hunt1D+hunt2B; 

r1 = rand; 
r2 = rand; 
% Figure out which window we’re in. 
if (r1 < hunt1D/total) 

if (hunt2(a) > 0) 
hunt2(a+1) = hunt2(a); 
hunt1(a+1) = hunt1(a) - 1; 

else 
hunt2(a+1) = hunt2(a); 
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hunt1(a+1) = hunt1(a) + 1; 
end 

else 
if (hunt1(a) > 0) 

hunt2(a+1) = hunt2(a) - 1; 
hunt1(a+1) = hunt1(a); 

else 
hunt2(a+1) = hunt2(a) + 1; 
hunt1(a+1) = hunt1(a); 

end 
end 
t(a+1) = -log(r2)/total + t(a); 
a = a+1; 

end 
hunt1 = hunt1 + crithunt1; 
hunt2 = hunt2 + crithunt2; 
A{b}=[hunt1(1:a) ; hunt2(1:a) ; t(1:a)]; % Save in a cell 

end 

timeLen = zeros(1,trials); % Make a time length vector 
stepLen = zeros(1,trials); % Make a step length vector 
for i=1:trials 

timeLen(i) = A{i}(3,end); 
stepLen(i) = length(A{i}); 

end 

% We look at the trials up until the first one to maxSteps ran out of time. 
maxStepLens=find(stepLen==max(stepLen)); maxTime=min(timeLen); 
numExtinct=trials; % First assume everything went extinct 
if (max(stepLen) == maxSteps) % Check how many made it to maxSteps 

numExtinct = trials-length(maxStepLens); 
end 
fprintf(’%.2f secs\n’,toc); % Log time of the most intensive part 

t = linspace(0,maxTime,numSteps); % time vector 
hunt1 = zeros(trials,numSteps); % hunt1 vector 
hunt2 = zeros(trials,numSteps); % hunt2 vector 
hunt1(:,1) = inithunt1+crithunt1; hunt2(:,1) = inithunt2+crithunt2; 

% Now we quantize the data into a discrete time interval 
fprintf(’Quantizing...\n’); 
for i = 1:trials % i = current trial 

j = 2; % j = current quantized time step 
k=1; % k = current time step of actual data 
trialSteps = length(A{i}); 
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while (k < trialSteps & j <= numSteps) 
% If next actual time > quantized step 
if (A{i}(3,k+1) >= t(j)) 

hunt1(i,j) = A{i}(1,k); % Record population as current 
hunt2(i,j) = A{i}(2,k); 
j = j+1; 

else 
k = k+1; 

end 
end % end trial 

end % end quantizing 

% We take population entries and find average and variance 
fprintf(’Finding Mean and Variance...\n’); 
varhunt1=zeros(1,numSteps); varhunt2=zeros(1,numSteps); for 
a=1:numSteps 

w=hunt1(:,a); 
avghunt1(a)=mean(w); 
varhunt1(a)=var(w); 
v=hunt2(:,a); 
avghunt2(a)=mean(v); 
varhunt2(a)=var(v); 

end 

fprintf(’Plotting.\n’); maxvar=max(max(varhunt1),max(varhunt2)); 
maxavg=max(max(avghunt1),max(avghunt2)); 

subplot(2,2,1); hold off 
plot(t,avghunt1,’r’,t,avghunt2,’b’); % Time vs. populations 
axis([0,max(t),0,maxavg]); xlabel(’Time’); ylabel(’Population 
Size’); legend(’Hunters 1’,’Hunters 2’); 

subplot(2,2,2); % Population phase plane 
hold off plot(avghunt1,avghunt2); 
axis([min(avghunt1),max(avghunt1),min(avghunt2),max(avghunt2)]); 
xlabel(’Hunters 1’); ylabel(’Hunters 2’); 

subplot(2,1,2); % Variance 
hold off plot(t,varhunt1,’r’,t,varhunt2,’b’); 
axis([0,max(t),0,maxvar]); xlabel(’Time’); ylabel(’Variance’); 
legend(’Hunters 1’,’Hunters 2’); 

subplot(2,2,1); % Print time taken 
title(sprintf(’Competing Hunters - Linearized\n%d Trials/%d Extinctions’,... 

trials,numExtinct)); 
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