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1 Abstract 

Our research focuses on the nonlinear, elliptic partial di� erential equation 

−�u = |u|p−1 u + �u in , u 6� 0 in , u = 0 on @ , (1) 

where is a bounded domain in Rn , n � 3, and p = n
n 
+2 
−2 

is Sobolev’s critical exponent. The 
origin of (1) can be traced back to physics and geometry problems, such as Yamabe-type 
problems. (1) has been exhaustively studied for n � 4. Of the many open questions for 
n = 3, we address the existence of radially symmetric solutions when = B(0, R), in which 
case (1) reduces to 

00 − 0 5−u 
2 
u = u + �u, 0 < r < R, u 0(0) = 0, u(R) = 0 (2) 

r 

(notice the singularity at the origin). Building upon [10], we use numerical methods to study 
(2), thus posing the conjecture: 

= ( jˇ Let �j R 
)2, j = 1, 2, . . . be the eigenvalues for the linearized problem associ-

ated with (2) and �� j = (1− 
2
1 
j 
)2�j. For every � 2 (�j 

�, �j), there is a solution pair 

{u�, −u�}. Moreover, ku�k1 ! 0 as � ! �j 
− and ku�k1 !1 as � ! (�� j )+ . 

Our conjecture and its supporting evidence agree with the results of [2] and signifcantly add 
to those of [4]. 

2 Background 

2.1 Motivation 

Let be a bounded domain in Rn , with n � 3. Consider the nonlinear elliptic boundary 
value problem: 

−�u = |u|p−1u + f(x, u) in , 

u 6� 0 in , (3) 

u = 0 on @ , 

(n+2) pwhere p = , f(x, 0) = 0, and f(x, u) is a lower order perturbation of u , that is,
(n−2) 

f(x, u)
lim = 0. The solutions of (3) are critical values of the functional 

u!1 up Z Z Z 
1 1 

�(u) = |ru|2 − |u|p+1 − F (x, u),
2 p + 1 R u

where F (x, u) = 
0 

f(x, t)dt. This problem o�ers serious diÿculties when trying to fnd 

critical points by standard variational methods (A.2). 
The existence of positive solutions to (3) has been largely studied. The interest in posi-

tive solutions derives from variational problems in geometry (the best example is Yamabe’s 
problem, A.8) and physics (A.4). 
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2.2 Known Results 

In a frst attempt to narrow down the PDE (3), we assume that f(x, u) = �u, � 2 R. Thus, 
problem (3) reduces to 

−�u = |u|p−1u + �u in , 

u 6� 0 in , (4) 

u = 0 on @ . 

n+2Recall that p = 
n−2 

and is a bounded domain in Rn . Let �j, j 2 N, be the eigenvalues of 
the linearized problem associated with (4). This linear equation is known as the Dirichlet’s 
problem for the operator −�. It is known that: 

1. If � < 0 and is a ball in Rn , then (4) has no solution [15]. 

2. If � > �1, then there are no positive solutions of (4). (This is a well-known fact. For 
a proof, see [10].) 

3. If is a ball in Rn , then every positive solution of (4) is radially symmetric [12]. 

4. If n = 3 and is the unit ball, then (4) has a positive solution if and only if � 2 
(1

4 
�1, �1). Moreover, if � � 1

4 
�1 then there are no radially symmetric solutions of (4) 

[2]. 

˜5. If � 2 (�̃  
j, �j), for some �j that depends on the domain and the dimension, then 

problem (4) has at least mj pairs of solutions 

{uk(�), −uk(�)}, k = 1, 2, . . . ,mj 

where mj is the multiplicity of �j [4]. 

6. If is star-shaped, then there are no positive solutions of (4) for � � 0 [15]. 

7. If n � 4, then for all � 2 (0, �1) there exists a positive solution of (4) [2]. 

8. If n � 4, then for all � > 0 problem (4) has infnitely many solutions, not necessarily 
symmetric, that change sign [9]. 

9. If n = 4, 5 or 6, then there exist a constant �� > 0 such that for all � < �� problem 
(4) does not have radially symmetric solutions that change sign [1]. 

10. If n � 7, then for all � > 0 there exist infnitely many solutions of (4) that are radially 
symmetric and change sign [5]. 

3 






3 Our Problem 

PDE (3) was narrowed to (4). We are now going to focus our research on problem (4) when 
n = 3, = B(0, R), and R > 0. Thus, we study the (highly) nonlinear, elliptic partial 
di�erential equation 

−�u = u 5 + �u in B 

u 6� 0 in B (5) 

u = 0 on @B. 

3.1 Why is it a problem? 

Despite its simple form, (5) is particularly diÿcult to study when n = 3 because of its 
high nonlinearity compared to the higher dimensional versions (n � 4). Let’s step back to 
problem (4) which is posed for general n. When n = 3, p = 5, but when n = 4, p = 3. As 
the dimension increases, the nonlinear term of (4), |u|p−1u, becomes less and less nonlinear 

n+2because limn!1 p = limn!1 n−2 
= 1. Thus, the term |u|p−1u tends to u. 

Notice how in higher dimensions (n � 4), as seen in section 2.2, there is an abundance 
of results addressing existence of all types of solutions: positive as well as sign-changing 
solutions and solutions with and without radial symmetry. 

3.2 What needs to be studied? 

Based on the known results of section 2.2, we have a foundation on which to build our 
research. 

The top graph in fgure 1 shows what is already known for problem (5) when R = 1, 
that is, when our domain is the unit ball B(0, 1) ˆ R3 . The eigenvalues are known to have 
the form �j = (jˇ)2 , j 2 N. It is known that radially symmetric, positive solutions exist 
exclusively in the �1 interval (� 

4 
1 , �1) (items 2.1.3 and 2.1.4). It is also known that solutions 

exist in the �j intervals (�̃  
1, �1), (�̃  

2, �2), . . . , (�̃  
j, �j) (item 2.1. 5). Combining the above 

results, it follows that the solutions in the �j intervals for j � 2 must change sign. Note that 
these results do not say whether these sign-changing solutions are radially symmetric. Also 
note that the (�̃  

j, �j) intervals are not drawn to scale so as to convey a better visualization; 
in reality, they are much narrower, specifcally, �j − �̃  

j = 0.1380 [4]. Finally, the graph 
incorporates the fact that no solution exists for � < 0 (item 2.1.1). 

The bottom graph of fgure 1 shows what has already been studied in [10] concerning 
the unit ball. Based on the study of the frst two �j intervals, the following conjecture was 
posed in [10]: 

Conjecture 1. If � 2 (�j 
�, �j), where (�j 

�)1/2 − (�j)
1/2 = ˇ 

2 
, then PDE (5) with R = 1 has 

a pair of radially symmetric solutions {u�, −u�}. Moreover, ku�k1 ! 0 as � ! �− andj 

ku�k1 !1 as � ! (�� j )+ . 
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Figure 1: Top: Graphical representation of items 1, 3, 4, and 5 from section 2.2, when 

= B(0, 1) ˆ R. Bottom: Results from [10]. 

We focus on exploring the existence and qualitative behavior of radially symmetric so-
lutions of (5). First, we study to see if our research supports the conjecture (from [10]) for 
R = 1. Then we try other domains besides the unit ball. We test to see how solutions 
behave qualitatively in di�erent �j intervals (�� j , �j), j 2 N, for R > 0. We also want to 
estimate values for the left bound, �� j , of the di�erent �j intervals and hopefully prove that 
asymptotes exist at those left bounds. In addition, we want to solve for a solution to our 
problem (5). 

3.3 Reducing Our PDE to an ODE 

Assuming that the solutions of (5) are radially symmetric, we get the following ordinary 
di�erential equation: 

200 − 0 5−u u = u + �u, 0 < r < R, 
r 

u 0(0) = 0 (6) 

u(R) = 0 
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Due to the radial symmetry, the solutions will only depend on r, thus, 

2 1 1 cos� −�u = −urr − ur − u�� − u°° − u° 
r r2 r2sin2� r2sin� 

(Laplacian in spherical coordinates) 

2 
= −urr − ur 

r 
(other partial derivatives vanish, since u does not depend on � nor °) 

200 − 0 = −u u 
r 

(no need for partial derivative notation since u is a function of a single 

variable, r). 

This justifes the left hand side of the ODE (6) above. 

4 Numerical Methods 

The boundary value problem (BVP) (6) is much too diÿcult to solve using analytical tech-
niques, therefore numerical techniques are used instead. Particularly we use the nonlinear 
shooting method. In general, linear and nonlinear shooting methods are used to solve 
BVPs. 

The linear shooting method expresses solutions to linear BVPs as a linear combination of 
solutions to the individual initial value problems (IVPs), one for each boundary condition. 
The solution to a nonlinear problem cannot be expressed as a linear combination of solutions 
to the IVPs. Instead we use the nonlinear shooting method. 

4.1 The Nonlinear Shooting Method - Overview 

The nonlinear shooting method approximates solutions to nonlinear BVPs using solutions 
to a sequence of initial value problems (IVPs) involving some parameter, such as the value 
of the solution at a specifed point or the derivative of the solution at a specifed point [3]. 
The value of this parameter is adjusted until the solution satisfes the boundary conditions. 

For our problem, we start by fxing the value for �. Then we make an initial guess to 
the value of the solution at r = 0, because only the derivative of the solution at this point is 
known. Since solutions always come in pairs, (that is, if u is a solution, then so is -u) then 
without loss of generality we choose a nonnegative initial guess. Call this guess a0. Using 
u(0) = a0 we pose the following IVP, 

200 − 0 5−u u = �u + u 
r 

u 0(0) = 0 (7) 

u(0) = a0 

where a0 > 0. Our method then “shoots” the solution that we denote by u�(·, a0), to the IVP 
(7). If u�(R, a0) = 0, then this is the solution to our BVP (6). However, if u�(R, a0) = 0, 

6 
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then a new guess is used for u(0) and we pose another IVP using this guess, 

200 − 0 5−u u = �u + u 
r 

u 0(0) = 0 (8) 

u(0) = a1 

where a1 > 0. If the solution to (8), denoted by u�(·, a1), satisfes the boundary condition 
at r = R, then u�(·, a1) is the solution to our BVP (6). Likewise if u�(R, a1) 6= 0, then 
another guess, say a2 > 0, is used for u(0). In this manner, a sequence of IVPs and their 
corresponding solutions are obtained until a solution that satisfes the BVP (6) is found. 

Figure 2: Graphical example of the nonlinear shooting method 

4.2 The Shooting Method as a Zero Finding Problem 

The iterative process outlined above is actually a root fnding problem. Defne G� : R+ ! R 
by G�(a) = u�(R, a). G�(a) takes the initial guess a = u(0) and outputs the value of the 
corresponding solution at r = R, u�(R, a). Our goal is to obtain a value of a, say a = a�, 
that will yield the solution that satisfes the BVP (6). In other words, we want to fnd a 
zero, a�, of the function G�. 

Here is the fgure of the function G� defned above with � = 36 and R = 1 (thus the 
domain is the unit ball): 
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Figure 3: G36(a) vs. a, when R = 1 

Note that G�(a) crosses the a-axis only once over [0, 100]. This occurs at the desired 
value of a, say a�, that solves the IVP with u(0) = a� and meets the boundary conditions 
at r = R, u(R) = 0. Also notice that, a� = 0 will also work. This is another zero for G� 

and when our program “shoots” a solution from this point (i.e. u(0) = 0), it results in the 
trivial solution, u � 0. Of course, we are not interested in the trivial solution, so we always 
choose a� > 0. 

We program the necessary steps of our nonlinear shooting method in Matlab. Matlab is a 
high-level language and interactive environment that enables you to perform computationally 
demanding tasks faster than with traditional programming languages such as C, C++, and 
Fortran [14]. 

As we said before, implementing the shooting method reduces to fnding the zeros of 
G�. To do this in Matlab, we use a built-in zero fnding function called fzero. fzero has 
two inputs: the name of the m-fle where the function G� (see the script for G.m below) is 
defned and an initial guess. fzero frst fnds an interval containing the initial guess where 
the endpoints di�er in sign. Then it searches the interval for the desired zero using a combi-
nation of the secant, bisection, and inverse quadratic interpolation methods. fzero returns 
the value of a point “near” where the function changes sign. Specifcally, fzero returns a 
value a� for which G�(a�) < 10−6 (close enough to zero), which is its default tolerance. If 
fzero fails to fnd such a point it returns “NaN”. 

G.m script 

function shooting = G(a) 
global lambda r0 R; 
u0 = [a;-(r0/3)*(lambda*a+a^5)]; 
I = [r0;R]; 
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options = odeset(’RelTol’,1e-6); 
[r,u] = ode45(’f’,I,u0,options); 
m = size(r,1); 
shooting = u(m,1); 

G.m returns the value of G� at a�, which is G�(a) = u�(R, a), in the Matlab code. In 
other words, G “shoots” the solution to the IVP with initial guess u(0) = a. This IVP has 
solution u�(·, a). G only returns u�(·, a)atr = R, but clearly evaluating G at a� requires 
solving an initial value problem over all of the interval [0,R], a process carried out by the 
instructions in lines 3 to 6 in the above script. The following sections explain in detail those 
instructions. 

4.3 Preparing to Use ODE Solvers in Matlab 

Before writing the program for the nonlinear shooting method, we have to rewrite our BVP 
(6) as a system containing two frst order equations because Matlab can only solve frst order 
di�erential equations or a system of frst order di� erential equations. To accomplish this, we 
use the following change of variables: 

u1 = u ) u 0 = u2 (9) 1 
0 00 u2 = u 0 ) u = u2 

Now we solve for u00 in (6) and obtain 

u1 = u ) u 0 = u2 (10) 1 

2 
u2 = u 0 ) u 0 = − u2 − �u1 − u1

5 .2 r 
(11) 

When we set U = [u1; u2], the ODE in our BVP (6) becomes the system of frst order 
equations defned by 

5U 0 = F (r, U) = [u2; − 
2 
u2 − �u1 − u1]. (12) 

r 

In an m-fle named F.m, we input the function F . Here is the content of the F.m fle: 

function dUdr = F(r,U) 
global lambda; 
dUdr = [U(2); −U(1)5 − lambda � U(1) − (2 � U(2))/r]; 

9 



4.4 Dealing with the Singularity at r = 0 

If asked to solve the system U 0 = F (r, U), with 0 < r < R, any ODE solver from Mat-
lab will require an initial condition U0 = U(0) = [u1(0); u2(0)] = [u(0); u0(0)] = [a; 0] = 
[guess; known] and will start by evaluating F at (r, U) = (0, U0). This of course will lead to 
division by zero, due to the singularity present in our di�erential equation (now present in 
the second component of the vector-valued function F). 

The term in the di�erential equation that contains the singularity, 2 
r 
u0(r), has the inde-

terminant form 0
0 

as r ! 0 because of the boundary condition u0(0) = 0. Therefore we apply 
L’hôpital’s to this term and get 

u0(r) u00(0) 
lim = = u 00(0). (13) 
r!0 r 1 

Using the result in (13), we can replace the troublesome term in ODE (6) with u00(0). Solving 
for u00(0) gives 

�u(0) + u(0)5 �a + a5 

u 00(0) = − = − 
3 3 

where a is the initial guess for u at r = 0. Returning to the problem posed in vector form, we 
have obtained that F (0, U0) = [a; −(r0/3)(�a+a5)]. For any other value of r, F continues to 
have the form shown in (12). Because the frst step will di�er from any other subsequent one 
as we use the ODE solvers, we decide to use Euler’s Method to obtain the frst solution 
point to our BVP (6), say U at some r0 positive but small. 

Euler’s method is the simplest and most fundamental method for numerical integration. 
At any given point r in the interval, Euler’s method obtains the next approximation to U , 
U(r + h), by using a line, thus its algorithm reads: U(r + h) = U(r) + hF (r, U(r)). With 
r = 0 and h = r0, we obtain: 

U(r0) = U(0) + r0F (0, U(0) 

= U0 + r0F (0, U0) 

= [a; 0] + r0[a; − r0 
(�a + a 5)]

3 

= [a; − r0 
(�a + a 5)]

3 

We choose the step size to be r0 = 10−10 . Euler’s method is not the most accurate. So, 
we use it in a single step, to pass from r = 0 to r = r0, where the step size r0 is chosen small 
enough to minimize the error introduced by the method, but positive to get away from zero. 
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Figure 4: Note: r0 is not drawn to scale. In reality, the di�erence in that frst step is not 
noticeable by the human eye. 

To solve our di�erential equation over the interval [r0, R] we use ode45. ode45 is 
a standard ODE solver in Matlab. It invokes a Runge-Kutta method, which creates more 
eÿcient calculations compared to Euler’s method. Runge-Kutta uses trial step-sizes at every 
midpoint of an interval to cancel out lower-order error terms. ode45 then solves the IVP 

2 
U 0 5 = F (r, U) = [u2, − u2 − �u1 − u1], r0 < r < R (14) 

r 

U0 = [a; − r0 
(�a + a 5)]. 

3 

This explains lines 3 thru 6 in the script fle g.m presented in section 4.2. 

4.5 Matlab Code Implementing the Nonlinear Shooting Method 

global lambda r0 rf n 
r0=1e-10; 
rf=2; % the radius of the ball 
I=[r0;rf]; 
L = []; A = []; m = [1]; M = []; 

% The vectors L and A will store the values of 
% lambda and a respectively. The matrix M will store 
% the corresponding soln’s to the ODE, that is, M 
% will contain all the solutions obtained by this 
% program. The vector m will store the position in M 
% where one solution ends and another begins. 

fprintf(1,’Enter the number of lambdas you wish to check: ’) 
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n = input(’ ’); 

for i = 1:n 
fprintf(1,’Enter a value for lambda: ’) 
lambda = input(’ ’); 
fprintf(1,’Enter a guess for the value of a: ’) 
guess = input(’ ’); 
a=fzero(’sol1’,guess); 
L(i) = lambda; A(i) = a; 
u0=[a;-(r0/3)*(lambda*a+a^5)]; 
[r,U] = ode45(’f’,I,u0); 

% [r,U] is a temporary matrix to store the 
% current sol’n. Then [r,U] is concatenated 
% to the matrix M at each step. [r,U] is 
% updated with each run through the loop. 

m = [m ; m(i) + size(r,1)]; 
% the ith component of the column vector 
% m stores the number of columns of the 
% vector [r,U] 

M_temp = M; 
M = [M_temp;[r,U]]; 

% this code stores all the soln’s to the matrix M so 
% that they can be plotted in a graph later on 

end 

% this last part of the code plots the resulting graphs 
clf 
hold on 

for j = 1:n 
plot(M(m(j):m(j+1)-1,1),M(m(j):m(j+1)-1,2)) 

end 

display(A) % j displays all values stored in A 

The program has a simple scheme for computing, saving, and plotting solutions to the 
BVP (6). It uses a for loop to obtain solutions to (6), given a value for � and an initial guess 
a, the value of the solution at r = 0 (0 � r � R). For convenience we will refer to a as the 
norm of the solution, specifcally the infnity norm. Please note that di�erent values for � 
yield distinct solutions to (6) and that various solutions have various norms (not necessarily 
distinct, the norm of a solution depends not only on � but on the domain of consideration 
as well). Inside the loop are two predefned Matlab functions of special signifcance to this 
program: fzero and ode45. With the initial guess for the norm, the fzero function calls 
another function defned in an m-fle named sol1. sol1 takes the initial guess and generates 
the solution using ode45. The output of sol1 is the value of the solution at r = R. fzero 
fnds the particular value for the norm of the solution that will satisfy the boundary condition 
at R. With the correct norm, the program proceeds to store this value in a vector A. It also 
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stores the value of � you entered into another vector L. So long as the program is not run 
again, you can make a plot comparing the values of � and the corresponding norms of the 
solutions. 

This program is interactive, because it asks the user for input. First, it asks for n, the 
number of times the program will run through the for loop. Inside the for loop, the program 
asks for other input from the user as well. It asks for a value for � and an initial guess for the 
norm. The initial guess for the norm can be chosen arbitrarily, but from our past experience 
and the conjecture concerning the behavior of solutions, we choose our guesses strategically. 
For example, when we study solutions in the unit ball and choose di�erent values for � in 
the interval (1

4 
ˇ2, ˇ2), we notice a pattern: the closer � is to ˇ2 , the closer the norm is to 

1 ˇ2zero, and the closer � is to 
4 

, the norm increases asymptotically to infnity. When a � is 
chosen that is not close to the endpoints of this interval but somewhere in between, the norm 
steadily increases along the interval from right to left. Similar observations about the norm 
of solutions for di�erent values of � are discovered in the balls that we study. Therefore, 
when we or other researchers go on to study balls of di�erent radii, it is important to get a 
”feel” for how the norm of solutions to (6) behaves for di�erent values of �. In other words, 
one should test the program for a few di�erent � values that are reasonably close to each 
other. It is safe to assume that the actual values for the norm of the solution corresponding 
to each � chosen are close also. Thus chose your guesses accordingly. 

4.6 Error Analysis 

When we study solutions to our problem in the unit ball and choose a value of � in the 
interval (1

4 
�1, �1) we encounter interesting results. According to the conjecture, when we 

approach �� 1 = 1 
4 
�1 ˇ 2.46 from the right, the solution u at r = 0 increases asymptotically to 

infnity. Since it is not possible to reach the critical value �� 1 (� can never be �� 1), we can get 
reasonably close to it with our program. The value of a solution for � near �� 1 is expected 
to be large. With an initial guess of 1,000 or 10,000, our program tells us that a� = 15.685. 
If we choose our initial guess to be large, say a0 = 100, 000, fzero returns 103,748. This 
suggests that the function G� crosses the a�-axis more than once. The results for � = 2.6, 
2.5 are similar. A large a0 gives a large a�, but for the other initial guesses, a0 = 1, 000, 
10,000 fzero returns a value very near zero. These observations are summarized in Table 
(1). 
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� a0 a� 

2.7 1,000 15.685 
2.7 10,000 15.685 
2.7 100,000 103,748 
2.6 1,000 6.31·10−30 

2.6 10,000 3.16·10−30 

2.6 100,000 103,784 
2.5 1,000 1.58·10−30 

2.5 10,000 1.62·10−27 

2.5 100,000 103,824 

Table 1: Note: relative tolerance = 10−3 

One possible explanation for this is that the function G� crosses the horizontal axis more 
than once. In fact this may be the case when using ode45’s default tolerance. 

Notice that the graph of G� crosses or touches the horizontal axis more than once. This 
suggests that as we change the initial guess, fzero will return a root nearest the guess. 
Similar results are observable for the graph of G� when the relative tolerance of ode45 is 
changed to 10−4 as shown in the fgure below. 
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Now we want to observe the behavior of G� as we refne the relative tolerance of ode45. 
The next three fgures show a plot G� where the relative tolerance is 10−5 , 10−6 , and 10−9 , 
respectively. 
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As we increase the relative tolerance for ode45, it becomes apparent that the function 
G� only has one zero, a� = 15.685, and that the function asymptotically approaches the 
a-axis from below. This behavior is depicted when we use relative tolerance 10−5 , 10−6 , and 
10−9 . Based on these observations, we decided to change ode45’s default tolerance and work 
with a more trustable one, 10−6 . 

Note: The asymptotic behavior of G� was observed for di�erent values of � within the 
frst two � intervals when working in the unit ball. Consistently, G� crosses the a-axis once, 
from positive to negative, and continues to approach the a-axis from below. Presumably, the 
a-axis is a horizontal asymptote for G�, in which case we would have the uniqueness of a� 

and therefore the uniqueness of our solutions. G�’s observed qualitative behavior certainly 
provides evidence that solutions (or solution pairs) might be unique. This is not the focus 
of our work, but it is possible for future research. 
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5 Results 

5.1 Findings and Observations 

5.1.1 Eigenfunctions and Eigenvalues for a general R 

Due to the problem’s high nonlinearity, we follow standard procedures to linearize our PDE 
(5) and ODE (6). By removing the nonlinear terms, we fnd the eigenvalues that guide us in 
using our boundary value problem solver. Specifcally, we know what values of � to consider 
when shooting solutions with out BVP solver. 

In order to fnd the generalized eigenfunctions and eigenvalues for any given R, we have 
to linearize our equations. Therefore, under symmetry assumptions: 

Linearized Partial Di�erential Equation 

−�u = �u in B 

u = 0 on @B 

Linearized Ordinary Di�erential Equation 

200 − 0−u u = �u, 0 < r < R 
r 

u 0(0) = 0 (15) 

u(R) = 0 

Based on the solution for R = 1, we naturally guess a similar solution that depends on R, 
say � � 

1 jˇr 
uj(r) = sin . 

r R 

Next we fnd the frst and second derivatives of the guess solution: � � � � 
0 1 jˇr jˇ 1 jˇr 

u = cos − sin 
2r R R r R � �� �2 � �� � � � 

00 1 jˇr jˇ 2 jˇr jˇ 2 jˇr 
u = − sin − cos + sin 

2 3r R R r R R r R 

Then we check to see if the guess solution satisfes the boundary conditions: 

1 
u(R) = sin(jˇ) = 0 

R � � � � � �
jˇr jˇr jˇr cos − sin 00 R R R u (0) = lim = j 2r 0 
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Because we can not divide by zero, we must use L’hôpital’s rule to solve for u0 j(0). � � � � � � � �2 � � � �
jˇ jˇr jˇr jˇ jˇr jˇ cos − r sin − cos0 R R R R R R u (0) = j 2R 

jˇ − 0 − jˇ 

= R R 

R 
= 0 

Since our guess solution satisfes the two boundary conditions, we are certain that we 
have the correct eigenfunctions along with the associating eigenvalues: 

Eigenfunctions: 

1 jˇ|x| 1 jˇr 
uj(x) = sin( ) or uj(r) = sin( ) (16) 

|x| R r R 

Eigenvalues: 

jˇ 
�j = ( )2 , j = 1, 2, . . . (17) 

R 

5.1.2 Generalized Conjecture 

We are initially given the list of known results (section 2.2) and the conjecture for the unit 
ball, Conjecture 1. Upon verifying the conjecture for higher �j intervals, we go on to study 
other sized balls besides the unit ball and discover a generalization of the conjecture that 
works for di�erent sized balls. Thus, the conjecture becomes the general form 

= ( jˇ Generalized Conjecture: Let R > 0 and �j R 
)2, j 2 N, be the eigenvalues 

for the linearized problem associated with (6) and �� j = (1 − 
2
1 
j 
)2�j. For every 

� 2 (�� j , �j), there is a solution pair {u�, −u�}. Moreover, ku�k1 ! 0 as � ! �− j 

and ku�k1 !1 as � ! (�� j )+ . 

5.1.3 Bump in the road 

1/2 
)1/2 ˇAs stated before, we frst study a given conjecture that states� that �j − (�� j = 

2 
for�2 

= ( jˇ R = 1. Since we know that �j )2 , we can solve for �� = 1 − 1 �j.R j 2j 

Because we want to see how solutions of the ODE (6) behave in other domains besides the 
unit ball, we generalize our eigenfunction and eigenvalue formulas so as to depend on R. At 

= ( jˇ frst, we only use the generalized �j formula, �j R 
)2 , to plug into the �� j formula. After 

a few simulations, we realize that we may have been using the wrong conjecture because 
we are not taking into consideration that the �� j formula is missing an R term. So we 
return to the conjecture and solve for a general �� j formula so that it contains an R term,� �2 � �2 
�� = 1 − R �j, where �j = jˇ .j 2j R 

After running numerous simulations to test the validity of both conjectures, the �� j for-
mula for the unit ball appears to be valid even for other sized balls whereas the general 
formula does not appear to work. Thus, we continue to use the original �� j formula and do 
not use the general formula. 
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5.1.4 In the Long Run 

This section goes into a few details about what happens in the long run to �j, �
� 
j , and 

(�j − �� j ). 
= ( jˇ )2( jˇ )2 )2 ˇ2 

Given �j )2, j 2 N, and �� j = (1 − 1 )2�j = (1 − 1 = (j − 1 
R2 ,R 2j 2j R 2 

1. When R is fxed, 

)2 ˇ2 
(a) limj!1(��) = limj!1[(j − 1 ] = 1j 2 R2 

(b) limj!1(�j) = limj!1[( jˇ 
R 

)2] = 1 
(c) " #� �2

1 
lim (�j − �� j ) = lim �j − 1 − �j
j!1 j!1 2j" !#� �2

1 
= lim �j 1 − 1 − 

j!1 2j"� �2 � � ��# 
jˇ 1 1 

= lim 1 − 1 − + 
j!1 R j 4j2 � �2 �� �� 

jˇ 1 1 
= lim 1 − 1 + − 

R j!1 j 4j2 �� �� 
ˇ2 1 

= lim j − 
R2 j!1 4 

= 1 

Therefore, when R is fxed, �� j , �j, and the length of the intervals (�j − �� j ) increase 
without bound as j increases. In other words, the higher the �j interval, the �j and 
�� j values become larger and further apart. In terms of the bifurcation diagram, the 
bifurcation branches become larger and more distant from each other as j increases. 

2. When j is fxed, 

)2 ˇ2 
(a) limR!1(�� j ) = limR!1[(j − 1

2 R2 ] = 0 

(b) limR!1(�j) = limR!1[( jˇ 
R 

)2] = 0 

(c) "� �2 � �2 
# � � jˇ 1 ˇ2 

lim �j − �� j = lim − j − 
R!1 R!1 R 2 R2 " !#� �2

ˇ2 1 
= lim j2 − j − 

R!1 R2 2 

= 0 

19 



 

Therefore, when j is fxed, �� j , �j, and the lengths of the intervals (�j − �� j ) decrease as 
R increases. That is, as the radius of the ball gets larger, the lengths of the �j intervals 
become smaller and smaller. 

3. When j is fxed, 

)2 ˇ2 
(a) limR!0(�

�) = limR!0[(j − 1 ] = 1j 2 R2 

(b) limR!0(�j) = limR!0[(
jˇ 
R 

)2] = 1 
(c) "� �2 � �2 

# 
jˇ 1 ˇ2 

lim(�j − �� j ) = lim − j − 
R!0 R!0 R 2 R2 " !#� �2

ˇ2 1 
= lim j2 − j − 

R!0 R2 2 

= 1 

Thus, when j is fxed, �� j , �j, and the lengths of the intervals (�j − �� j ) increase as R 
decreases. In other words, as the radius of the ball gets smaller, the lengths of the �j 

intervals become larger and larger. 
For example, the following table gives the frst three lambda values for three di�erent 
R values. 

R = 1 R = 1/2 R = 2 

= ˇ2�1 �1 = 4ˇ2 ˇ2 
�1 = 

4 

�2 = 4ˇ2 �2 = 16ˇ2 = ˇ2�2 

�3 = 9ˇ2 �3 = 36ˇ2 9ˇ2 
�3 = 

4 

When R = 2, �1 = ˇ 
4 

2 
; 

when R = 1, �1 = ˇ2; and 
1 = 4ˇ2when R = 
2 
, �1 . 

In addition, when R = 2, the di�erence between �1 and �2 is 
3ˇ 
4 

2 
; 

when R = 1, the di�erence between �1 and �2 is 3ˇ
2; and 

when R = 
2
1 ,the di�erence between �1 and �2 is 12ˇ

2 . 

4. Since the length of the intervals increase as j increases, we worried that consecutive �j 
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intervals will overlap. "� �2 
# 

1 
lim (�j 

� − �j−1) = lim 1 − �j − �j−1 
j!1 j!1 2j"� �2 � �2 � �2 

# 
1 jˇ (j − 1)ˇ 

= lim 1 − − 
j!1 2j R R "� # 
ˇ2 1 

�2 � � 2 = lim 1 − j2 − (j − 1)
R2 j!1 j�� � � 
ˇ2 1 1 � � � � 

= lim 1 − + j2 − j2 − 2j + 1 
R2 j!1 j 4j2 � � 
ˇ2 1 

= lim j2 − j + − j2 + 2j − 1 
R2 j!1 4� � 
ˇ2 3 

= lim j − 
R2 j!1 4 

= 1 

Since the limit of the distance between consecutive intervals increases as j increases, the 
consecutive intervals will never overlap each other. In addition, the distance between 
them strictly increases. The closest distance between the two lambda values is when 
j = 2. This fnding is important because in higher dimensions, it is found that they 
get closer to each other. 

5.2 Graphs 

Using numerical analysis, di�erent values of � produce various solutions to our nonlinear 
ODE (6). The behavior of the solutions can be positive, change sign, or even have no 
solution. 

Matlab’s nonlinear shooting method allows us to fnd the solution curves that would 
reach our target (R, 0). It calculates a� = u�(0), our shooting point. As we select di�erent 
values of � within each interval, we get distinct solution curves shot from di�erent a� values. 
When we study positive solutions (� 2 (�� 1, �1)), we notice that all of them were strictly 
decreasing. When we study solutions that change sign (� 2 (�� j , �j), j = 2, 3, . . .) we notice 
that they oscillate with decreasing amplitudes. Thus, for all of our solution curves, it holds 
that max0�r�R |u�(r)| occurs at r = 0. In other words, a� = u(0) = max0�r�R |u�(r)| = ku�k. 
This allows us to plot, for each solution curve u� found, the corresponding bifurcation point 
(�, a�). The fgures labeled a� versus � show bifurcation branches. So, as � ! �� j , the 
solutions tend toward infnity, which provides further evidence of there being an asymptote 
at �� j . The following fgures show the results of the nonlinear shooting method for di� erent 
values of � within each interval, and their qualitative behaviors for the distinct domains. 
Also, we provide results for when � is fxed and for when � and the R values di�er. 
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5.2.1 Solution Curves and Bifurcation Branches for R = 1 

� = 1 
1 4 

�1, �1) in the unitThe graphical results show positive solutions within the interval (� 
ball. Although only a couple of solutions are provided, we notice that di�erent � values 
produce di� erent a� values. As we approach the �� j value, we appear to get an asymptote at 
the �� j approximation; thus, our results support the conjecture. 

Figure 5: Solution Curves and Bifurcation Branch for � 2 (1
4 
�1, �1) and R = 1 
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The results of this fgure show an interesting outcome. Unlike the previous result with 
positive solutions, we now get solutions that change sign once. The qualitative behavior of 
the (�� 2, �2) is similar to the previous bifurcation graph which shows that as we approach �� j , 
the bifurcation goes to infnity. 

�Figure 6: Solution Curves and Bifurcation Branch for � 2 (�2, �2) and R = 1 
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Using the same process previously stated, we can fnd solutions in the interval (�� 3, �3). 
As we proceed with the results, pay close attention to the graph with the axes r versus u� 

because it shows that solution curves change sign twice in this case. 

Figure 7: Solution Curves and Bifurcation Branch for � 2 (�� 3, �3) and R = 1 
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In the interval (�� 4, �4), we have solutions that change sign three times. The bifurcation 
branch appears to go to infnity as � approaches the critical value �� 4. 

Figure 8: Solution Curves and Bifurcation Branch for � 2 (�� 4, �4) and R = 1 
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We continue with the same process to get solutions in (�� 5, �5), except j = 5 in this case. 
We can see how the solutions change sign four times in this interval. 

Figure 9: Solution Curves and Bifurcation Branch for � 2 (�� 5, �5) and R = 1 
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After looking at di�erent values of the �j intervals, we can conclude that the solutions 
change sign j − 1 times. Based on that discovery, the solution curves change sign fve times 
for j = 6, which is the number of times the solution curves cross the r-axis. 

Figure 10: Solution Curves and Bifurcation Branch for � 2 (�� 6, �6) and R = 1 
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This bifurcation diagram supports the conjecture and also shows how the di�erent bifur-
cation graphs have the same qualitative behavior with an asymptote at each of their lower 
bounds �� j . 

Figure 11: Bifurcation Diagram for R=1 

Table for R = 1 

� 
j and the estimated � 

is a close approximation to the predicted value, which helps support our con-

�Table 1 shows the values calculated for �j, the predicted � Thej . 
estimated �� j 
jecture but does not prove it. Furthermore, the table seems to show that there is a constant 
change in the length of the intervals by about 10 units as j increases. 

R = 1 

j (1 − 1 )2 
2j 

�j 
�Predicted �j 

�Estimated �j Length of Interval 

1 1 
4 

ˇ2 2.46740110027234 2.468 7.400 

2 9 
16 

4ˇ2 22.20660990245106 22.300 17.270 

3 25 
36 

9ˇ2 61.68502750680849 61.700 27.226 

4 49 
64 

16ˇ2 120.9026539133446 121.00 37.014 

5 81 
100 

25ˇ2 199.8594891220595 199.900 46.880 

6 121 
144 

36ˇ2 298.5555331329531 298.600 56.800 

Table 2: Note: Predicted �� j = (1− 
2
1 
j 
)2�j, �j = (jˇ)2 , Length of Interval = �j −Estimated �� j 

28 



The same process to get solutions in �1 − �6 intervals for R = 1 is also used for R = 
4
1 , 

1 1 1R = , R = 2, and R = 4. The solution curves for R = , R = , R = 2, and R = 4 have 
2 4 2 

the same qualitative behavior as for R = 1: solutions change sign j − 1 times. 

15.2.2 Bifurcation Branches and Table for R = 
4 

1Figure 12: Bifurcation Diagram for R = 
4 

1Table for R = 
4 

Similar to Table 1, Table 2 shows the close relationship between the predicted and esti-
mated �� j values. We see that the change in the length of the intervals increases by about 
150 units as j increases. 

1R = 
4 

j (1 − 1 )2 
2j 

�j 
�Predicted �j 

�Estimated �j Length of Interval 

1 1 
4 

16ˇ2 39.47841760435743 43.320 114.590 

2 9 
16 

64ˇ2 355.305758439217 365.800 265.760 

3 25 
36 

144ˇ2 986.960440108936 1006.500 414.720 

4 49 
64 

256ˇ2 1934.442462613514 1959.700 566.920 

5 81 
100 

400ˇ2 3197.751825952952 3231.300 716.540 

6 121 
144 

576ˇ2 4776.888530127250 4815.800 869.090 

Table 3: Note: Predicted �� j = (1− 
2
1 
j 
)2�j, �j = (jˇ)2 , Length of Interval = �j −Estimated �� j 
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15.2.3 Bifurcation Branches and Table for R = 
2 

1Figure 13: Bifurcation Diagram for R = 
2 

Table for R = 1/2 

The results in Table 3 continue to show the close relationship between the predicted and 
estimated �j values. The lengths of the intervals for these results show that as j increases, 
the change in the length of the intervals increases by about 40 units. 

1R = 
2 

j (1 − 1 )2 
2j 

�j 
�Predicted �j 

�Estimated �j Length of Interval 

1 1 
4 

4ˇ2 9.86960440108936 9.900 29.578 

2 9 
16 

16ˇ2 88.82643960980423 89.000 68.913 

3 25 
36 

36ˇ2 246.7401100272340 247.000 108.305 

4 49 
64 

64ˇ2 483.6106156533786 484.000 147.654 

5 81 
100 

100ˇ2 799.4379564882380 800.000 186.960 

6 121 
144 

144ˇ2 1194.222132531812 1194.500 226.723 

Table 4: Note: Predicted �� j = (1− 
2
1 
j 
)2�j, �j = (jˇ)2 , Length of Interval = �j −Estimated �� j 
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5.2.4 Bifurcation Branches and Table for R = 2 

Figure 14: Bifurcation Branch for R = 2 

Table for R = 2 

The results for R = 2 again show the close relationship of the predicted and the estimated 
� values. As j increases, we see that the change in the length of the intervals increases by 
about 2.5 units. 

R = 2 

j (1 − 1 )2 
2j 

�j 
�Theoretical �j 

�Estimated �j Length of Interval 

1 1 
4 

ˇ2 

4 
0.61685027506 0.6765 1.7909 

2 9 
16 

ˇ2 5.55165247561 5.5560 4.3136 

3 25 
36 

9ˇ2 

4 
15.42125687670 15.6000 6.6066 

4 49 
64 

4ˇ2 30.22566347833 30.7700 8.7080 

5 81 
100 

25ˇ2 

4 
49.96487228051 49.9759 11.7091 

6 121 
144 

9ˇ2 74.63888328323 74.7000 14.1264 

Table 5: Note: Predicted �� j = (1− 
2
1 
j 
)2�j, �j = (jˇ)2 , Length of Interval = �j −Estimated �� j 
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5.2.5 Bifurcation Branches and Table for R = 4 

Figure 15: Bifurcation Diagram for R = 4 

Table for R = 4 

Once again the close relation between the predicted and estimated �j values is visible. 
For these results, the change in the length of the intervals is about 0.5 unit as j increases. 

R = 4 

j (1 − 1 )2 
2j 

�j 
�Predicted �j 

�Estimated �j Length of Interval 

1 1 
4 

ˇ2 

16 
0.15421256876702 0.168 0.449 

2 9 
16 

ˇ2 

4 
1.38791311890319 1.429 1.039 

3 25 
36 

9ˇ2 

16 
3.85531421917553 3.928 1.624 

4 49 
64 

ˇ2 7.55641586958404 7.654 2.216 

5 81 
100 

25ˇ2 

16 
12.49121807012872 12.612 2.809 

6 121 
144 

9ˇ2 

4 
18.65972082080957 18.809 3.398 

Table 6: Note: �� j = (1 − 
2
1 
j 
)2�j, �j = (jˇ)2 , Length of Interval = �j − Estimated �� j 
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5.2.6 Additional Findings on the Tables 

We frst observe the changes in the lengths of the di�erent �j intervals based on the last 
column of the tables in sections 5.2.1, 5.2.2, 5.2.3, 5.2.4, and 5.2.5 and we notice that there 
is a pattern in the changes in the interval lengths for each value of R that we study. For 
example, for R = 1, we notice that the change in the lengths of the intervals increases by 
about ten units. We go further and actually calculate the change in the length of the intervals 
for the di� erent R values by using the formulas for �j and �� j . Instead of subtracting the 
estimated values for �� j from �j, we subtracted the predicted values for �� j from �j as seen 
in the last columns of Tables 2, 3, 4, 5 and 6 in sections 5.2.1, 5.2.2, 5.2.3, 5.2.4, and 5.2.5. 

Predicted length: �j − �� j � �2
1 

= �j − 1 − �j
2j !� �2

1 
= �j 1 − 1 − 

2j � �2 � � �� 
jˇ 1 1 

= 1 − 1 − + 
R j 4j2 � �� � 
j2ˇ2 1 1 

= 1 − 1 + − 
R2 j 4j2 � �� � 
ˇ2 1 

= j − 
R2 4 

For R = 1: 

� � 
jth interval’s length: ˇ2 j − 1 � 4 � 

(j + 1)th interval’s length: ˇ2 j + 1 − 1 � �4 
= ˇ2 j − 1 + ˇ2� 4 � 
= ˇ2 j − 1

4 
+ 9.8696 

The predicted change in the length of the intervals (ˇ2 ˇ 9.8696 units) is quite close to 
our approximated value of 10 units. 

For any R: 

� � 
jth interval’s length: 

R
ˇ2

2 j − 1
4� � 

(j + 1)th interval’s length: ˇ2 
j + 1 − 1 

R2 � �4 
ˇ2 ˇ2 

= j − 1 +
R2 4 R2 

In general, the predicted change in the length of the intervals seems to increase by 
increments of 

R
ˇ2

2 , which are very close to our approximated values. 
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5.2.7 Bifurcation Diagrams 

To better analyze the results, we provide graphs with a fxed � value but di� erent bifurcation 
branches R = 1/4, 1/2, 1, 2, and 4. The following graph shows the fxed � value to be �1 

with di�erent R values. 

Figure 16: Bifurcation Branch for �1 

Figure 17: Bifurcation Branch for �2 
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Figure 18: Bifurcation Branch for �3 

Figure 19: Bifurcation Branch for �4 
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Figure 20: Bifurcation Branch for �5 

However, the graph below shows �6 for all the R values. By comparing the previous 
bifurcation branch graphs, we notice how the length of the intervals vary. 

Figure 21: Bifurcation Branch for �6 
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Furthermore, we provide the di�erent R values and the di� erent �j values in the following 
diagrams to show the relationship between the R values and the �j intervals. It is diÿcult 
to see what is happening in the left side of the diagram, so we rearrange the axis to have a 
better look at the results. 

Figure 22: Bifurcation Diagram for R = 1/4, 1/2, 1, 2, 4 
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As we move our focus to the left of the diagram, we can see how some of the solution 
branches overlap. Also, similarities are seen between the trivial solutions or �j values for 
di�erent R values and �j intervals. These solutions originate from the same point but then 
diverge onto separate paths. 

Figure 23: Bifurcation Diagram for R = 1/4, 1/2, 1, 2, 4 
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Figure 24: Bifurcation Diagram for R = 1/4, 1/2, 1, 2, 4 
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Figure 25: Bifurcation Diagram for R = 1/4, 1/2, 1, 2, 4 

In Figure 25, the � value at (16ˇ2 , 0) ˇ (157.9, 0) serves as an eigenvalue for three R 
values. Thus, three di� erent bifurcation branches emerge from the same �. In this case, 
since � = 16ˇ2: 

For R = 1, �4 = (4ˇ)2 = 16ˇ2 � �2 

For R =
1 
, �2 =

2 
1 

ˇ 
= 16ˇ2 

2 � 2�2 

For R =
1 
, �1 = 

ˇ 
1 = 16ˇ2 

4 
4 
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Figure 26: Bifurcation Diagram for R = 1/4, 1/2, 1, 2, 4 
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Figure 27: Bifurcation Diagram for R = 1/4, 1/2, 1, 2, 4 
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Figure 28: Bifurcation Diagram for R = 1/4, 1/2, 1, 2, 4 
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6 Conclusion 

Based on our research, we discovered that the conjecture can be generalized and used for 
di�erent sized balls. There appears to be an asymptote at the left bound �� j of the interval 
(�� j , �j) based on our numerical analysis. Also, the bifurcation branches reveal a similar qual-
itative behavior for di�erent sized balls, and the solution curves indicate that the solutions 
change sign j −1 times, depending on which �j interval they are in. We are able to calculate 
what the solutions and the bifurcation branches look like in the long run and in extremely 
large or extremely small sized balls. 

We would like to mention that the observed solution curves u� behave like the eigenfunc-
tions (uj(r) = 1 sin( jˇr )) for values of � near �j. As � approaches �j 

� , the shape of solution 
r R 

curves degenerate and appear to approach an L-form: the value of the solution at r = 0 
tends to 1; the solution drops dramatically and crosses the r-axis at a value r that tends 
to 0; and the amplitude of the oscillations (j − 1) over the interval (0, R) tend to 0. 

As it was pointed out in the beginning of our study, the exponent p = n
n 
+2 
−2 

brings forth 
many interesting phenomena involving the existence and nonexistence of solutions [6] to 

−�u = |u|p−1 u + �u in , u 6� 0 in , u = 0 on @ . 

The diÿculty of this problem in dimension n = 3 has led researchers to study our problem in 
higher dimensions. Throughout the duration of our research, we found a paper that presented 
a sixteen-lemma-computer-assisted proof to prove that in dimension n = 4, the second 
bifurcation branch does not intersect the preceding eigenvalue [11]. With our conjecture, 
we can be certain that none of the bifurcation branches emanating from the bifurcation 
points (�j, 0), j 2 N, will intersect the preceding eigenvalue. Another paper found solves our 
problem for some exponent slightly greater than fve (i.e. p + �) [13] and again it confrms 
that our problem in its original form is harder. 

7 Future Research 

1. Try to use a comparison theorem [18] to trap solutions of (6) in a closed region. This 
could guarantee the existence of solutions as well as lower and upper bounds for the 
solutions. A frst attempt is to compare our di� erential equation with 

• Lane-Emden 
200 0 5 u + u + u = 0 
r 

• Bessel 
1 �2 

00 u + u 0 + (1 − )u = 0 
2r r

• Mathieu 
u 00 + (� − 2qcos(2r))u = 0 
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2. Prove our conjecture that 

−�u = u 5 + �u in B 

u 6� 0 in B 

u = 0 on @B, 

where B(0, R) ˆ R3 , R > 0, has pairs of radially symmetric solutions, {u�, −u�}, 
= ( jˇ 8 � 2 (��, �j), with �� = (1 − 1 )2�j, and �j )2 . Moreover, solutions change sign j j 2j R 

j − 1 times over the interval (0, R). From the point of view of bifurcations, ku�k ! 0 
as � ! �j and ku�k ! 1 as � ! �� j . 

• Are these solution pairs unique? 

3. Study the partial di�erential equation instead of the ordinary di�erential equation. 

• Are all solutions in the ball radially symmetric? 

4. Find solutions of 

−�u = |u|p−1 u + �u in 

u 6� 0 in 

u = 0 on @ 

when is a domain other than the ball in Rn . 

• For instance, star-shaped domains other than the ball. 

5. Can we extend our approach to other dimensions? 
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A Appendix 

In this section we collected varied information that is connected, directly or indirectly, to 
our problem of study. 

A.1 Bifurcation 

It represents the sudden appearance of a qualitatively di�erent solution for a nonlinear system 
as some parameter is varied. 

A.2 Calculus of Variations 

A branch of mathematics that generalizes fnite-dimensional calculus to minimizing functions 
of functions, or functionals, in an infnite-dimensional case. Setting the frst variation of aR 
functional �[u] = f(u, u0, x) dx equal to zero, �� = 0, results in the so-called Euler-
Lagrange equation(s) which has the form 

@f d @f − = 0. 
@u dx @u 

For example, the PDE 
−�u = |u|p−1 u + f(x, u)in 

is the Euler-Lagrange equation for the functional Z Z Z 
1 1 

�(u) = |ru|2 − |u|p+1 − F (x, u),
2 p + 1 R 

where F (x, u) = 
0 

u 
f(x, t)dt. Thus, the solutions u of the PDE are minimizers for the 

functional �. 

A.3 Elliptic Di erential Equation 

If D[u] = �i,jaij(x)uxixj + �kbk(x)uxk + cu, then D is called elliptic if and only if for every 
x, all the eigenvalues of the matrix (aij)ij are positive and the matrix is symmetric. For 
example, if D = � in 3-D, then bk = 0, aij = 0 if i 6= j, and aii = 1. Thus, the above matrix 
becomes a diagonal matrix with all the diagonal entries equal to 1. 

A.4 General Theory of Relativity 

Albert Einstein’s general theory of relativity substitutes the idea of gravity with that of 
the geometry of space. This theory proposes that matter tells space-time how to curve, 
and curved space tells matter how to move. The mathematics behind this theory comes 
from Einstein’s feld equations, which are ten coupled hyperbolic-elliptic nonlinear partial 
di�erential equations. Theoretically, these equations can be used to describe all possible 
space-time scenarios. For a mathematician though, the diÿculty lies in the equations being 
nonlinear and coupled. So, researchers are always led to restrict their calculations to simpler, 
and more manageable systems. 
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Einstein discovered that in Riemannian Geometry, tensor calculus can be used to model 
space-time, represented by a 4-dimensional manifold. Thus, equations arise in mathemat-
ical physics (e.g. Yamabe’s), where local geometries are studied by comparing (isometric) 
manifolds and their curvature. Of eight feasible geometries given by the “geometrization con-
jecture”, the curvature of the observable Universe, or the local geometry, is in all likelihood 
described by one of the three “primitive” geometries: 

Figure 29: Three types of curvatures of the universe 

A.5 The Laplace Operator 

Recall how to defne the Laplace operator. It is the sum of the second-order, partial deriva-
tives, where is a domain in Rn . 

n 
@2X 

Dimension n: � = 
@x2 

ii=1 

u : ˆ Rn ! R, Xn 
@2u(x) 

x = (x1, x2, . . . , xn) ) �u(x) = 
@x2 

ii=1 

Laplace Operator in Spherical Coordinates p 
x = r cos(�) sin(°) r = x2 + y2 + z2 

y = r sin(�) sin(°) � = arctan(
x
y ) 

z = r cos(°) ° = arccos( z
r 
) 

u : ˆ R3 ! R 
u(x, y, z) = v(r, �, °) 
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2 1 1 cos ��u = uxx + uyy + uzz = vrr + 
r vr + 

r2 v�� + 
r2 sin2 � 

v°° + 
r2 sin � 

v° 

A.6 Linearization 

Linearizing a nonlinear di�erential equation of the form 

D[u] = g(u) 

(D is the di� erential operator and g is a nonlinear function) means substituting g by its 
tangent line approximation, L(u) = g(u0) + g0(u0)(u − u0). This tangent line approximation 
is taken about a point u0 satisfying g(u0) = 0 and g0(u0) 6= 0. 

For example, if we use our PDE (5), then 

D[u] = −�u 

g(u) = �u + up 

u0 � 0 

The tangent line approximation is 

g(u0) + (u − u0)g 
0(u0) = 0 + u(� + (5)(04)) = �u. 

The linearized PDE becomes −�u = �u. 

A.7 Radial Symmetry 

A function u : ! R is said to be radially symmetric or to have the radial symmetry 
property if it is independent of all angles (�, °, etc.) and depends exclusively on r = kxk, 
x 2 ˆ Rn . The following fgure shows two functions defned over = unit ball in R2 that 
have the radial symmetry property. 

A.8 Yamabe’s Problem 

An important problem in general relativity is to tell when two space-times represented by 
two Riemannian manifolds are ‘locally the same,’ or isometric. In the feld of di�erential 
geometry, this question is addressed in a classical problem called the Yamabe Problem: 

n − 2(n+2)/(n−2) + [ −�gu = u Rg]u, u > 0, M, (18) 
4(1 − n) 
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where M is any manifold. When solving (18), the hardest case turned out to be that of a 
sphere. There is a vast family of Yamabe-type problems, including those that accommodate 
the case of noncompact Riemannian manifolds or manifolds with a boundary (for instance 
[17, 16, 8, 7]). 
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