
Some Simple Epidemic Models 

California State Polytechnic University, Pomona 

and 

Loyola Marymount University 

Department of Mathematics Technical Report 

Jill M. Anderson� , Adrienne A. Byrne, † Ruthie P. Fields‡ , Linda M. Segovia,§ 

Randall J. Swift ¶ 

Applied Mathematical Sciences Summer Institute 
Department of Mathematics & Statistics, 

California State Polytechnic University Pomona 
3801 W. Temple Ave. 
Pomona, CA 91768 

July 2006 

�South Dakota School of Mines & Technology 
†Bu�alo State College 
‡Boston College 
§Honors College of Florida Atlantic University 
¶California State Polytechnic University Pomona 

1 



Abstract 

In this paper, a brief overview of the simple deterministic susceptible/infective 
(SI) epidemic model is detailed. The deterministic model is appropriate for large 
populations, where random interactions can be viewed as being averaged out. In smaller 
populations however, random interactions play a signifcant role. For example, N.T.J. 
Bailey (1963) considered a stochastic SI epidemic model. With the help of previous 
work by Gani and Swift (2006), Bailey’s solution is modifed to include a preventative 
quarantine of the susceptible population. From this new equation, the associated 
probability generating function, the transient probabilities, steady state probabilities, 
expected value, and expected epidemic duration can be found. Computer simulations 
support the results for this stochastic SI model. 
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1 Introduction 

Epidemiology is the study of the distribution and determinants of chronic and infectious 
disease prevalence in humans [4]. In 1770, Daniel Bernoulli used mathematics to describe 
the spread of smallpox in a variolated population. Since then, epidemiological modeling has 
su�ered dips in popularity and reprisals in interest. Today, the most interesting problems in 
disease tracking, control, and prevention are modeled mathematically using epidemiological 
processes. More recently, researchers are turning to computer simulations to verify analytic 
results. When analytic methods become too arduous or even impossible, these simulations 
can provide insight into complicated situations. 

This report uses both analytic methods and computer simulation to describe three epi-
demic models: the simple deterministic epidemic model, the simple stochastic epidemic 
model and the simple epidemic model with preventative quarantine. The simple epidemic 
model with preventative quarantine utilizes recent work of Gani & Swift [5]. In Gani and 
Swift’s work, the term catastrophe is equivalent to what we term a preventative quarantine: 
ending an epidemic with a random, instantaneous reduction the susceptible population to 0. 

1.1 Basics of Epidemiology 

Epidemiology is used to describe the distribution of disease (how the disease spreads), build 
and test theories (about an epidemic), plan, implement, and evaluate detection (of the dis-
ease), control and ultimately prevent disease. By creating mathematical models, diseases 
can be studied without endangering humans or acting inhumanely. Mathematicians can also 
calculate the most cost e� ective methods of handling a disease and predict how many people 
will be saved by implementing possible solutions. 

As stated by Herbert Hethcote [4], “The art of epidemiological modeling is to make suit-
able choices in the model formulation, so that it is as simple as possible and yet is adequate 
for the question being considered.” Some simple epidemic models take a few parameters into 
consideration. Although having fewer parameters allows for a simpler representation, this 
can prove to be a disadvantage. The fewer parameters a model has, the more naive and un-
realistic the model becomes. In comparison, a general epidemic model is model which takes 
more parameters into consideration. This model is more representative of real-life, yet it in-
creases the diÿculty of obtaining parameter estimations and known behavior of all solutions. 

Even though epidemic modeling began in the mid 1700’s, it grew rapidly after World War 
II when research on the spread of infectious diseases became a high priority. Norman T.J. 
Bailey, one of the frst well-known epidemic mathematical modelers, inspired mathematicians 
to model the spread of a disease. His results in epidemic modeling were important because 
they tested possible solutions for ending the epidemic with the least amount of infectives. 
With improved sanitation, antibiotics, and vaccination programs, the 1970’s demanded mod-
eling of newly emerging diseases such as Lyme disease and Legionnaire’s disease. [3]. Since 
the study of disease is a never ending process, mathematical models are constantly being 
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updated and perfected to include more factors such as age, passive immunity and disease-
acquired immunity [4]. To begin our study of disease, we will frst consider the deterministic 
simple epidemic model. 

2 The Deterministic Simple Epidemic Model 

The simple epidemic model is one where the population consists only of susceptibles and 
infectives (SI). Once a susceptible becomes infected, he or she remains in that state forever. 
The deterministic SI model describes an infection with no latency. This infection occurs in 
a population with no immunity, where no one recovers or dies. For example, the beginning 
of a highly infectious, but not serious, upper respiratory infection might meet these criteria 
[1]. 

The deterministic SI model considers two disjoint populations: the susceptibles and the 
infectives. Let 

s(t) represent the number of susceptibles at time t, 

i(t) represent the number of infectives at time t. 

For initial conditions, let 

s(0) = s0, 

i(0) = i0. 

Because the population remains constant, we also have 

s(t) + i(t) = s0 + i0 for all t. 

In the work that follows, let 

s0 = n, 

i0 = 1, 

s(t) + i(t) = n + 1 for all t. (1) 

s(t)i(t)
Susceptibles - Infectives 

Figure 1: Deterministic SI Model 

In other words, the epidemic begins with a single infective in a closed population of n sus-
ceptibles. Figure 1 is a pictorial representation of the simple epidemic model. In accordance 
with the law of mass action[2], susceptibles are becoming infectives at a rate proportional 
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to the product of the sizes of the two populations. So, if > 0 is the contact constant then 
s(t)i(t) is the amount of susceptibles become infective per unit of time. 

This gives 

ds 
= − s(t)i(t), (2) 

dt 
di 

= s(t)i(t), (3) 
dt 

where s(t) � 0, i(t) � 0 and > 0 for all t. Looking at the qualitative behavior of these 
functions, we observe that ds � 0, which implies s(t) is a monotone non-increasing function. 

dt 

Similarly, di
dt 
� 0 which implies i(t) is an monotone non-decreasing function. 

Given > 0 and i(t) > 0 for all t, the system (2)-(3) reaches the equilibrium if and only 
if s(t) = 0. Thus the epidemic ends when all the susceptibles have become infectives. 

These same equations can be analyzed analytically. Substituting equation (1) into equa-
tion (2) we obtain 

ds 
= − s((n + 1) − s). 

dt 

Separation of variables and partial fraction decomposition gives 

−C t(n+1) (n + 1)e 
s(t) = . −C t(n+1) 1 − e 

Using the initial conditions and solving for C gives 

n(1 + n) 
s(t) = . 

(n+1)tn + e 

Similarly, we can substitute equation (1) into equation (3) to obtain 

di 
= i((n + 1) − i)

dt 

this can be solved to give 

(n+1)t(n + 1)e 
i(t) = . 

(n+1)tn + e 

Figure 2 displays the behavior of the susceptibles and infectives with a population size of 
10 and = 0.25. This graph demonstrates the quantitative behavior we found with s(t) be-
ing a logistically non-increasing function and i(t) being a logistically non-decreasing function. 

Another important graph is that of the epidemic curve. An example is fgure 3. The 
y-values, 

dt
di , indicate how quickly the epidemic is spreading at time t. In particular, the 

maximum indicates when the infection is spreading fastest. 
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Figure 2: Graph of the SI Model 

3 The Stochastic Simple Epidemic Model 

3.1 Motivation 

“While deterministic methods are useful to understand the spread of an epidemic in a large 
population these methods are not satisfactory for smaller populations.” [2]. The determin-
istic model ignores the e�ect of an individual on the larger population. A stochastic model 
attempts to represent how an individual’s behavior a �ects the spread of an epidemic. Fur-
thermore, the average of the stochastic process describing the epidemic should be close to 
the values predicted by the deterministic model. 
The stochastic SI model was frst introduced by M.S. Bartlett (1947) and subsequently stud-
ied by Norman T.J. Bailey in the 1950’s. In a series of papers (1953, 1955 and 1963), N.T.J. 
Bailey studied the stochastic SI model. The 1963 publication has a detailed elegant solution 
and we model our work after this solution. 
Our work begins with a thorough comparison of the stochastic and deterministic SI models. 
The stochastic SI model is similar to the deterministic SI model in that it considers two 
disjoint populations and contact constant > 0. S(t) represents the susceptibles and �(t) 
represents the infectives. The population is still closed with S(0) = S0 and �(0) = �0. 
However, for our work, we will take S0 = n and �0 = 1. Therefore, 

S(t) + �(t) = n + 1 for all t. 

Unlike the deterministic model, the stochastic model does not produce an exact function 
for S(t). Let 

Pj(t) = P [ S(t) = j | S(0) = n] 

be the probability that there are j susceptibles at time t given that there are initially n 
susceptibles. Since the population is closed, Pj(t) = 0 when j > n + 1. So, S(t) is a 
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Figure 3: Epidemic Curve w/ = 0.25 The peak indicates the halfway point of the epidemic. 

stochastic process with values of 0, 1, 2, . . . , n. At the initial time t = 0, 

Pj(0) = P [ S(0) = j | S(0) = n]. 

Thus Pn(0) = 1 and Pj(0) = 0 when j =6 n. 

A stochastic version of the SI model can be obtained by assuming that the probability 
of exactly one contact between a susceptible and an infective in a small time interval is 
proportional to the product of the number of susceptibles and the number of infectives. 
That is, 

P [exactly 1 contact in(t, t + �t)] = S(t)�(t)�t 

= S(t)[n + 1 − S(t)]�t. 

When a contact occurs, there is a probability that another susceptible moves into the infec-
tive category. The rate at which a person moves from being susceptible to infective is shown 
in Table 1 for each possible state size. 

Transitions 
j ! j − 1 

Rates 
j(n + 1 − j) for j = 0, . . . , n 

Table 1: Transition Rate Table for Stochastic SI Model 

We want to determine the probability that the population is in state j at time t+�t. We 
assume �t is so small that in any time period, only one of two events can occur - either there 
is a contact between a susceptible and an infective, i.e. one susceptible becomes infective, 
or there is no contact, i.e. no susceptible becomes infective. This means that there are only 
two ways the population could end up in state j at time t + �t: either 1) the susceptible 
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population was at state j+1 at time t and a contact occurred or 2) the susceptible population 
was at state j at time t and no contact occurred. This transition is shown in Figure 4. 

j + 1 r 
1 Contact 

PPPPPPPPPPPPPPP P0 Contact qj r - r j 
t t + �t 

Figure 4: Time Dependent Transition Diagram for the Stochastic SI Model 

The state diagram in Figure 5 indicates the probability of staying in state j as well as the 
probability of moving from state j to state j − 1 for j = 1, . . . n. The epidemic begins with n 
susceptibles; and it ends when the number of susceptibles equals 0. The law of mass action 
dictates that the transition rate between states is S(t)�(t). The probability of having n−1 
susceptibles at time t is the probability that 

• there were n susceptibles at time t − �t and a contact occurred in (t − �t, t), so that 
susceptible population decreased by 1 

or 

• there was already n − 1 susceptibles and no contact occurred. The probability that 
this occurs is 1 − 2 (n − 1)�t which is the complement of the probability that the 
population decreases from n − 1 to n − 2. 

n�t 2 (n−1)�t 3 (n−2)�t 2 (n−1)�t n�t�� j�� j�� j�� j��j 
. . .n n−1 n−2 1 0�� �� �� �� ��� � � � � 

1− n�t 1−2 (n−1)�t 1−3 (n−2)�t 1− n�t 1 

Figure 5: State Diagram for the Stochastic SI Model 

In mathematical terms this diagram represents 

Pj(t + �t) = P (0 contacts during �t | S(t) = j) + P (1 contact during �t | S(t) = j + 1) 

= (1 − j(n + 1 − j)�t)Pj(t) + (j − 1)(n − j)�t Pj+1(t). 

8 



� �

� �

� �

� �

�

�

�

�

�

Rearranging gives, 

Pj(t + �t) − Pj(t) = − j(n + 1 − j)�t Pj(t) + (j − 1)(n − j)�t Pj+1(t), 

so that 

Pj(t + �t) − Pj(t) 
= − j(n + 1 − j)Pj(t) + (j − 1)(n − j)Pj+1(t). 

�t 

Taking the limit of both sides as �t goes to zero 

Pj(t + �t) − Pj(t)
lim = Pj 

0(t) = − j(n + 1 − j)Pj(t) + (j − 1)(n − j)Pj+1(t)
�t!0 �t 

gives the following equations which are known as the forward Kolmogorov equations [7] for 
the simple SI epidemic model: 

Pj 
0(t) = − j(n + 1 − j)Pj(t) + (j − 1)(n − j)Pj+1(t) for j = 0, . . . , n − 1 (4) 

Pn 
0 (t) = − nPn(t). (5) 

The goal for these Kolmogorov equations is to solve for the probabilities Pj(t). One 
method of solving these di� erential equations is to recursively solve the Pj 

0(t). This method 
is extremely tedious and leads to an algebraic nightmare. An alternative approach is obtained 
by using probability generating functions (PGFs) and partial di erential equations (PDEs). 

3.2 Solving PDEs and PGFs 

A probability generating function (PGF) is a power series whose coeÿcients are probabilities. 
In the current context it takes the form 

nX 
y(z, t) = Pj(t)z

j = P0(t) + P1(t)z + . . . + Pn(t)z n . 
j = 0 

Our goal is to fnd Pj(t). But, since we know Pj 
0(t), we take the partial derivative of the 

PGF with respect to t, so that X@y 
n 

jP 0 = (t)z . (6) j@t 
j =0 

Using the derivative in equation (6) and the Kolmogorov equations we substitute to 
obtain 

" #X@y 
n 

= [(j + 1)(n + 1 − (j − 1))Pj+1(t) − j(n + 1 − j)Pj(t)] z
j 

@t 
j=0" # 
nX� � 

= −j(n + 1)Pj(t)z
j + j2Pj(t)z

j + (j + 1)(n + 1)Pj+1(t)z
j − (j + 1)2Pj+1(t)z

j 

j=0" # 
n n n nX X X X 

j j j= − j(n + 1)Pj(t)z + j2Pj(t)z + (j + 1)(n + I)Pj+1(t)z
j − (j + 1)2Pj+1(t)z . 

j=0 j=0 j=0 j=0 
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Using a common substitution the resulting equation is 

� � 
@y @y 2 @

2y @y @y @2y @y 
= −(n + 1)z + z + z + (n + 1) − z − 

@t @z @z2 @z @z @z2 @z � � 
@y @2y 

= [−(n + 1)(z − 1) + (z − 1)] + z(z − 1) . 
@z @z2 

After a little algebra, the resulting PDE is � � 
@y @2y @y 

= z(z − 1) − (z − 1)((n + 1) − 1) . (7) 
@t @z2 @z 

N.T.J. Bailey solved equation 7 in 1963. The PDE in equation (7) can be solved using 
separation of variables. Let 

y(z, t) = f(z)h(t), 

so that the partial derivatives are 

@y @y 
= f(z)h0(t) and = f 0(z)h(t)

@t @z 
@2y 

= f 00(z)h(t). 
@z2 

These new equations can be substituted into equation (7) and then simplifed, which yields 

f(z)h0(t) = [z(z − 1)f 00(z)h(t) − (z − 1)((n + 1) − 1)f 0(z)h(t)]. 

Factoring out h(t), we obtain 

f(z)h0(t) = h(t)[z(z − 1)f 00(z) − (z − 1)((n + 1) − 1)f 0(z)] 

which is 

h0(t) 
= [z(z − 1)f 00(z) − (z − 1)((n + 1) − 1)f(z)]. 

h(t) f(z) 

Since the two sides of this equation are equal, then 

h0(t)−c = (8) 
h(t) 

and 

−c = [z(z − 1)f 00(z) − (z − 1)((n + 1) − 1)f(t) (9)
f(z) 
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where c is a constant to be determined. 
Solving equation (8) results in 

ke−cth(t) = . 

To solve for f(z) in equation (9), we simplify the equation 

−c = [z(z − 1)f 00 − (z − 1)((n + 1) − 1)f 0]
f 

so that 

0 = z(1 − z)f 00 − n(1 − z)f 0 − cf . (10) 

3.3 Transient Probability 

The PDE achieved in the previous section is extremely diÿcult to sovle because of repeated 
eigenvalues. To get around this, we follow Bailey and employ perturbation: let N = n + � 
where � > 0. This change makes (10) solvable and with Mathematica we achieve 

nX 
−j(N+1−j) t y(z, t) = dje 2F1(−j, j − N − 1, −N, z) (11) 

j=0 

where 2F1(−j, j − N − 1, −N, z) is a hypergeometric function, and 

(−1)jn!(N − 2j + 1)N ! 
dj = n . (12) Q

j!(n − j)!(N − n)! (N − j − r + 1) 
r = 0 

But what is 2F1[−j, j − N − 1, −N, z]? The standard hypergeometric function 2F1 is X `1 
(a)` (b)k z 

2F1[a, b, c, z] = (13) 
(c)` `! 

` = 0 

where (a)` = a(a + 1)(a + 2) . . . (a + ` − 1) with (a)0 = 1 is the rising factorial notation or 
Pochhammer symbol. 

Recall from 3.2, 

nX 
y(z, t) = Pk(t) z 

k 

k=0 

= P0(t) + P1(t)z + P2(t)z 
2 + . . . + Pn(t)z n , 

where the transient probabilities for this process are simply the coeÿcients of this polynomial. 
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Consequently setting z = 0 gives, 

y(0, t) = P0(t) 

where 

n � �X 1−j(N−j+1) tP0(t) = dj e 2F1(−j, j − N − 1, −N, 0) 
0! 

j =0 

is our PGF evaluated at z = 0. 

Expanding 2F1 gives 

X `1 
(−j)`(j − N − 1)` z 

2F1(−j, j − N − 1, −N, z) = 
(−N)` `! 

` =0 

(−j)1(j − N − 1)1 z (−j)2(j − N − 1)2 z
2 

= 1 + + + . . . . 
(−N)1 1! (−N)2 2! 

From this expansion, one can see that by substituting z = 0 into 2F1, gives 

2F1(−j, j − N − 1, −N, 0) = 1. 

Therefore 

nX 
−j(N−j+1) tP0(t) = dj e . 

j =0 

Taking derivatives of our general PGF and evaluating them at z = 0 yields � � � � � � 
1 @y 1 @2y 1 @ky

P1(t) = , P2(t) = , . . . , Pk(t) = . 
1! @z = 2! @z2 

z 0 k! @zk 
= 0z 0 = z 

Since 2F1(−j, j − N − 1, −N, z) is the only part of y(z, t) that contains z, then the rest of 
the equation will be treated as a constant when evaluating the partial derivatives of y(z, t) 
The expansion 

(−j)1(j − N − 1)1 z (−j)2(j − N − 1)2 z
2 

2F1(−j, j − N − 1, −N, z) = 1 + + (14) + . . . 
(−N)1 1! (−N)2 2! 

(15) 

has the derivative of 2F1 as 

@ (−j)1(j − N − 1)1 (−j)2(j − N − 1)2 
2F1 = 0 + 1 + z 

@z (−N)1 (−N)2 

(−j)3(j − N − 1)3 z 
+ + . . . . 

(−N)3 2 
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When this derivative is evaluated at z = 0, we have 

@ (−j)1(j − N − 1)1 
2F1 = ,

@z z=0 (−N)1 

which gives the probability for P1(t) as Xn 

−j(N−j+1) t (−j)1(j − N − 1)1
P1(t) = dj e . 

(−N)1j =0 

In a similar manner, Pk(t) is obtained as Xn 
(−j)k(j − N − 1)k 1−j(N−j+1) tPk(t) = dj e for k = 0, ..., n. 

(−N)k k! 
j = 0 

Figure 6: Transient Probabilities for stochastic SI Model with = 0.25 and n=10. 

Figure 6 is a graph of the transient probabilities for various Pk(t)
0s when = 0.25 and 

the total population size is n + 1 = 11. We can see, for example, that as time increases, 
the probability that all ten susceptibles remain uninfected, P10(t), decreases exponentially 
to zero. The probability that all ten of the susceptibles become infected, P0(t), increases to 
1 as time increases. This steady state probability will be shown in the following section. 

3.4 Steady State Probabilities 

The steady state probability for any given PGF is the limit of the transient probability as 
time, t, goes to infnity. Since 

ˆXn 
(−j)k(j − N − 1)k 1 1 for , k = 0−j(N−j+1)tlim Pk(t) = lim dj e = 

t!1 t!1 (−N)k k! 0 for , k > 0 
j = 0 
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This is because 

nX 
−j(N−j+1)tlim P0(t) = lim dj e 

t!1 t!1 
j = 0 

. So for j = 0 then 

lim P0(t) = lim d0 e 
0 = 1. 

t!1 t!1 

So as time goes on, there is a 100% chance that all the susceptibles will get infected 
And 

−j(N−j+1)t −1lim e = e = 0 
t!1 

3.5 Moments In Time 

The PGF y(z, t) can also be used to fnd the factorial moment of the process S(t). Repeated 
di�erentiation and evaluation z = 1 gives 

@ky
E[(S(t)(S(t) − 1)(S(t) − 2) . . . (S(t) − k)] = . 

@zk
z=1 

The expected value is 

@y 
E[S(t)] = . 

@z z=1 

Remember that the hypergeometric function 2F1 is X k1 
(−j)k(j − N − 1)k z 

2F1(−j, j − N − 1, −N, z) = 
(−N)k k! 

k =0 

and that expanded derivative for it is 

d (−j)1(j − N − 1)1 (−j)2(j − N − 1)2 
2F1(−j, j − N − 1, −N, z) = 0 + + 

dz (−N)1 (−N)2 

(−j)3(j − N − 1)3 1 
+ + . . . 

(−N)3 2 

When this derivative is evaluated at z = 1, the it becomes 

Xd 
1 

(−j)k(j − N − 1)k 1 
2F1(−j, j − N − 1, −N, 1) = . 

dz (−N)k (k − 1)! 
k =1 
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Therefore, X Xn 1 
(−j)k(j − N − 1)k 1−j(N−j+1) tE[S(t)] = dje . 

(−N)k (k − 1)! 
j =0 k = 1 

Similarly, 

1
di X (−j)k(j − N − 1)k 1 

2F1(−j, j − N − 1, −N, 1) = for i = 0 . . . n. 
dzi (−N)k (k − i)!

k = i 

Therefore, X Xn 1 
(−j)k(j − N − 1)k 1−j(N−j+1) tE[(S(t)(S(t) − 1)(S(t) − 2) . . . (S(t) − k)] = dje . 

(−N)k (k − i)!
j =0 k = i 

Knowing the general form for the factorial moment, we can easily fnd the steady state 
as time goes to infnity. Since 

−j(N−j+1) tlim e = 0 
t!1 

Then 

lim E[S(S − 1)(S − 2) . . . (S − k)] = 0 
t!1 

So the expected number of susceptibles that do not get infected is zero. 

3.6 Duration of Epidemic 

The duration of the stochastic epidemic tells us how long the epidemic lasts . Keeping that 
in mind allows us to fnd an analytic formula for it. Since S(t) is the number of susceptibles 
at time t and if S(0) = n, then S(t) is a death process that evolves by unit decrements at 
the epochs tn, tn−1, . . . , t1. This behavior is displayed in Figure 7. 

Let Tj be the length of the time interval for which there are exactly j susceptibles if there 
is initially 1 infective.The Tj’s are independent exponentially distributed random variables 
with expected values. 

1 
E[Tj] = 1 � j � n 

j(n + 1 − j) 

Thus, letting ˝ = inf{t : s(t) = 0} so that ˝ is the duration time of the epidemic, we have 

nX 
˝ = Tj. 

j=1 

Therefore, " # 
n n n 

1X X X 
E[˝ ] = E Tj = E[Tj] = 

j(n + 1 − j)
j=1 j=1 j=1 

is the expected duration. 
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Figure 7: Stochastic SI Expected Epidemic Duration Graph 

3.7 Simulation Results 

Computer simulations are an alternative method of determining the expected duration of 
the epidemic. To support our formulas, wrote Matlab simulations to model the duration of 
the epidemic. Figure 8 compares three di�erent values. Table 2 shows that simulation 
averages support expected duration formula. Notice that for increasing the duration is 
lower because the infection spreads more quickly. 

F ormula Simulation 

0.25 2.01 2.13 
0.50 1.07 1.01 
0.75 0.67 0.71 

Table 2: A comparison of expected duration formulas with the average duration for 100,000 
trials with n = 10. 

4 Stochastic SI Model with Preventative Quarantine 

Having considered the simple stochastic process, we would like now to add to this process a 
preventative quarantine. The idea of preventative quarantine is similar to that of a process 
with catastrophes. “The simple death process, the survival of susceptibles in a carrier-borne 
epidemic, the birth-death and immigration process, the unbiased random walk and the bar-
ber shop queue, are all subject to random catastrophes occurring as a Poisson process” [6]. 
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Figure 8: Three sample epidemic runs with varying s 

The epidemic ends when there are no more susceptibles. This can happen two ways; ei-
ther the susceptibles become quarantined at a random point in time or the susceptibles all 
become infective. Remember we are modelling the susceptibles and not the infectives since 
N.T.J. Bailey solved the stochastic SI model for the susceptibles. Therefore in this model, we 
quarantine the susceptibles. We named the process of removing the susceptibles before they 
become infective, preventative quarantine so that it is clear we are saving the susceptibles 
from becoming sick. Therefore, our type of quarantine is one of prevention. 

We assume that there is some way of detecting who is infected and who is not. Then 
upon detection we let � > 0 be the rate of how quickly we intervene and quarantine the 
susceptibles. The rest of the assumptions are the same as 3. Let S(t) be the number of 
susceptibles in the population at time t. 

Let �(t) be the number of infectives at time t. Suppose at t0 we have only one infective 
then �0 = 1 and our total population is n + 1. Suppose that there are S0 susceptibles 
initially, then S(0) = S0, and S(t) + �(t) = n + 1. Let > 0 be the contact constant. 
Then the rate at which the susceptibles are becoming infected is S(t)�(t). A pictorial 
representation shown in Figure 9 is helpful to clarify the process. Similar to the SI model 

without quarantine, when a contact occurs, another susceptible moves into the infective 
category. With quarantine, however, the epidemic can end at any point in time. The rate 
at which a person might move from being susceptible to infective is shown in Figure 10 for 
each possible state size. A pictorial representation of this is shown in Figure 4. 
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Figure 9: Stochastic SI Model with Preventative Quarantine 

Transitions Rates 
j ! j − 1 j(n + 1 − j) + � 

j ! 0 � 
for j = n, n-1, . . . , 2, 1 

Figure 10: Transition Diagram for Stochastic SI Model 

Our goal is to determine 

Pj(t) = P [S(t) = j|S(0) = S0]. 

As with the SI model, we can create the Kolmogorov equations to get the Pj(t)’s. It is helpful 
to see the state diagram when creating the Kolmogorov equations. Observing Figure 4 we 

1−��t 1−��t 1−��t 1−��t 
− n�t −2 (n−1)�t −3 (n−2)�t − n�t 1 

n�t 2 (n−1)�t 3 (n−2)�t 2 (n−1)�t n�t˙˘ j̇ ˘ j̇ ˘ j̇ ˘j j̇ ˘BN BN BN BN BN 
. . .n n−1 n−2 1 0 

��tˆˇ ˆˇ ˆˇ ˆˇ 1̂ ˇ*��t � 
��t 

��t 

Figure 11: State Diagram for Stochastic SI Model with Preventative Quarantine 

can see that 

P [staying at state n] = 1 − ��t − n�t 

and 

P [moving from state n to n − 1] = n�t + ��t. 

This produces the forward Kolmogorov equations 

Pj 
0(t) = (j + 1)(n − j)Pj+1(t) − ( j(n + 1 − j) + �)Pj(t) for 1 � j < n 
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Pn 
0 (t) = −( n + �) Pn(t). 

We could derive the PGF for this distribution by frst principles as was done for the 
stochastic epidemic model with out preventative quarantine, however, this process would be 
quite lengthy. An alternative approach is to follow a recent method of J. Gani and R.J. Swift 
(2006) for modifying the PGF of a random process to include a random catastrophe. Given 
a PGF, y(z, t), then G(z, t) is the PGF for the same process with a catastrophe constant �: Z t 

−�t �e−�v G(z, t) = e y(z, t) + y(z, v)dv, (16) 
0 

thus, this PGF is the general form for any process with a catastrophe. Substituting the 
PGF we developed for the simple stochastic model without quarantine, 

nX 
−j(N−j+1) t y(z, t) = dj e 2F1(−j, j − N − 1, −N, z), (17) 

j =0 

where 

(−1)j n! (N − 2j + 1)N ! 
dj = n ,Q

j! (n − j)!(N − n)! (N − j − k + 1) 
k =0 

and substituting this into equation (16) we are able to create a PGF for the stochastic simple 
epidemic model with preventive quarantine. 

That is, " # 
nX 

−�t −j(N−j+1) tG(z, t) = e dje 2F1(−j, j − N − 1, −N, z) 
j =0Z t 

−j(N−j+1) v+ �e−�vdje 2F1(−j, j − N − 1, −N, z)dv. 
0 

nX 
−�t −j(N−j+1) t = e dj e 2F1(−j, j − N − 1, −N, z) 

j=0 Z t 
−�v −j(N−j+1) + � dj 2F1(−j, j − N − 1, −N, z) e e vdv 

0 
nX 

t(j2 −j(1+N) −�)= dj e 2F1(−j, j − N − 1, −N, z) 
j=0 

t(j2 −j(1+N) −�) − 1e 
+ � dj 2F1(−j, j − N − 1, −N, z) 

j2 − j(1 + N) − � !X t(j2 −j(1+N)n 
(e −�) − 1)t(j2 −j(1+N) −�)= dj 2F1(−j, j − N − 1, −N, z) e + . 
j2 − j(1 + N) − � 

j =0 
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If we let 

t(j2 −j(1+N)(e −�) − 1)j(j−N−1)t−t�Aj(t) = e + ,
j2 − j(1 + N) − � 

then we can write this PGF as 

nX 
G(z, t) = dj Aj(t) 2F1(−j, j − N − 1, −N, z). 

j = 0 

4.1 Transient Probabilities 

The transient probabilities for this model can be found using the same process as before, 
since 

1X 
G(z, t) = Pk(t) z 

k 

k=0 

= P0(t) + P1(t)z + P2(t)z 
2 + . . . 

then G(0, t) = P0(t) so 

n � �X 1 
P0(t) = dj Aj 2F1(−j, j − N − 1, −N, 0) . 

0! 
j =0 

Now recalling equation (15) 

X k1 
(−j)k(j − N − 1)k z 

2F1(−j, j − N − 1, −N, z) = 
(−N)k k! 

k =0 

(−j)1(j − N − 1)1 z (−j)2(j − N − 1)2 z
2 

= 1 + + + . . . 
(−N)1 1! (−N)2 2! 

we have 

2F1(−j, j − N − 1, −N, 0) = 1 

. We see that 
nX 

P0(t) = dj Aj(t). 
j =0 

As with the simple stochastic model, we can fnd the transient probabilities, P1(t), P2(t), . . . , Pi(t): � � � � � � 
1 @G 1 @2G 1 @kG 

P1(t) = |z =0 , P2(t) = |z =0 , . . . , Pk(t) = |z =0 . 
1! @z 2! @z2 k! @zk 

It follows that Xn 
(−j)k(j − N − 1)k 1 

Pk(t) = dj Aj(t) . 
(−N)k k! 

j =0 
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A sample graph is show in Figure 12. This graph shows the transient probabilities for various 
states of j when = 0.25 and � = 1 for a total population of n + 1 = 11. We again see 
that as time increases, the probability of all ten susceptibles remain uninfected decreases. 
And the probability that all ten of the susceptibles get infected, P0(t), increases. However, if 
� > 0, the steady state probability for j = 0, (all the susceptibles getting infected), will never 
reach 1. And the probability of reaching any other state will never reach 0, not everyone will 
get infected. Note that the graph in fgure (12) shows that the SIQ process has steady-state 
probabilities. We fnd the 

Figure 12: Transient Probabilities for stochastic SI Model with Preventative Quarantine 
with = 0.25, � = 0andn = 10. 

[explain] 

4.2 Steady State Probabilities 

Now that we have our transient probabilities, we can readily fnd the steady state probabil-
ities. Since Aj(t) is the only part that contains t, it follows that 

t(j2 −j(1+N)�(e −�) − 1) −�t(j2 −j(1−N) −�)lim e + = 
t!1 j2 − j(1 + N) − � j2 − j(1 + N) − � 
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because j2 − j − j N − � will always be negative as j N > j2 . Therefore 

Xn −� 
P0 = dj 

j2 − j(1 + N) − � 
j =0 Xn −� j(j − N − 1)

P1 = dj 
j2 − j(1 + N) − � −N 

j =0 

. . . Xn −� (j)i(j − N − 1)i
Pk = dj for k = 0, . . . , n. 

j2 − j(1 + N) − � (−N)ij =0 

We next consider the moments of the process. 

4.3 Moments In Time 

Recall the PGF can be used to fnd the factorial moment of the process S(t) where 

@kG 
E[(S(t)(S(t) − 1)(S(t) − 2) . . . (S(t) − k)] = 

@zk
z=1 

and 
@G 

E[S(t)] = . 
@z z=1 

Using methods discussed earlier we fnd 

X Xn 1 
(−j)k(j − N − 1)k zk 

E[S(t)] = djAj(t) ,
(−N)k (k − 1)! 

j =0 k = 1 

and X Xn 1 
(−j)k(j − N − 1)k 1 

E[(S(t)(S(t) − 1)(S(t) − 2) . . . (S(t) − k)] = dj Aj(t) . 
(−N)k (k − i)!

j =0 k = i 

Knowing this, we can easily fnd the steady state factorial moments 

X Xn −� 
1 

(−j)k(j − N − 1)k 1 
E[S(S − 1)(S − 2) . . . (S − k)] = dj . 

j2 − j(1 + N) − � (−N)k (k − i)!
j = 0 k = i 

From the factorial moments we are able to produce the variance for our distribution. 
The variance is 

V [S] = E[S(S − 1)] + E[S] − (E[S])2 . 
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So that !X Xn −� 
1 

(−j)k(j − N − 1)k 1 
V [S] = dj 

j2 − j(1 + N−)� (−N)k (k − 2)! 
j =0 k =1 !X Xn −� 

1 
(−j)k(j − N − 1)k 1 

+ dj 
j2 − j(1 + N−)� (−N)k (k − 1)! 

j =0 k =1 !2X Xn −� 
1 

(−j)k(j − N − 1)k 1 − dj . 
j2 − j(1 + N) − � (−N)k (k − 1)! 

j =0 k =1 

While this equation is impractical for computation purposes, we return to the simulations 
used earlier to give numerical approximations. 

4.4 Expected Duration 

Recall the duration of an epidemic without quarantine is the time when all the susceptibles 
become infected. In the SIQ model, the epidemic can end at any point in time. This model 
is primarily dependent on �, the rate at which preventive quarantine in introduced. The Tj 

0s 
are still independently distributed random variables but the expected values are now: 

1 
E[Tj] = 1 � j � n 

j(n + 1 − j) + � 

By letting ˝ = inf{t : s(t) = 0} where ˝ is the duration time of the epidemic, we have 

nX 
Tj (18) 

j=1 

so that " # 
n n n 

1X X X 
E[˝ ] = E Tj = E[Tj] = 

j(n + 1 − j) + � 
j=1 j=1 j=1 

is the expected duration. 

Notice that 
1 1 � forj = 1, . . . , n. 

j(n + 1 − j) + � j(n + 1 − j) 
Therefore the expected epidemic duration with preventative quarantine is less than the ex-
pected epidemic duration without quarantine which is represented in Figure 13. 
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4.5 Simulation Results 

To determine if the derived formulas were correct, we wrote Matlab simulations to model 
the duration of the epidemic. Figure 14 compares three di�erent values and Figure 15 

Figure 14: Three sample epidemic runs with varying s and fxed �s 

5 Conclusion 

We approached our model by frst looking at the deterministic SI model and the stochastic 
SI model where the epidemic ends when all susceptibles become infected. As a way of 
shortening the duration of the epidemic we added a preventative quarantine which allowed 
for a random removal of the susceptibles from the population resulting in less infecteds. Once 
we formulated our model, we calculated the average duration of the epidemic analytically 
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�Figure 15: Three sample epidemic runs with varying s and fxed �s 

and by running computer simulations. In the future we would like to apply preventative 
quarantine to the general stochastic SIR model. 
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A Sample Code 

A.1 The SI Simulation 

% Simple Stochastic Epidemic Model with no Catastrophe 
% AMSSI 2006 - Randy’s Angels 
% Public Domain. Mess with this as much as you want. 
% 
% contact = Contact Constant 
% initPop = Initial population 

function simpleSI(c,initPop,trials) global contact number contact = 
c; number = initPop; 

numPaths = 3; % Number of sample paths to plot with average 

% First we generate the population growths and times in their own cell 
fprintf(’Generating %d trials\n’, trials); 
tic; % Start timer 
A=cell(1,trials); % Cell array to avoid a sparse matrix 
for i = 1:trials 

popSusc = zeros(1,initPop); % Initialize population and time vectors 
t = zeros(1,initPop); 
popSusc(1) = initPop - 1; % Fill in initial population and time 
t(1) = 0; 
j = 1; % j = Step counter for current simulation 

% This while loop will run will there is still individuals left 
% This time, maxStep is not critical, because the susceptible 
% population will go to zero in exactly initPop - 1 steps anyway 
while (popSusc(j) > 0) 

% Evaluates the beta constant 
total = contact*(initPop - popSusc(j))*popSusc(j); 

% Someone becomes infected 
popSusc(j+1) = popSusc(j) - 1; 

% Generate new time step and add to current time 
t(j+1) = -log(rand)/total + t(j);%indicates time of next event 
j = j+1;% reassigns the j value 

end 

A{i}=[popSusc(1:j) ; t(1:j)]; % Save pop and time vectors in a cell 
if (mod(i,fix(trials/10))==0) 
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fprintf(’.’); % Print out progress dots 
end 

end 

% Keep track of the length of runs and number of steps 
timeLen = zeros(1,trials); % Make a time length vector 

for i=1:trials 
timeLen(i) = A{i}(2,end);%indicates duration of the epidemic 

end 

% Stats in case anyone is interested 
avgDuration = mean(timeLen); maxTime = max(timeLen); medianTime = 
median(timeLen); 

% Now we quantize the data into a discrete time interval 
plotTime = linspace(0,maxTime,initPop); % Time vector to plot 
plotPop = zeros(trials,initPop); % Pop vector to plot 
plotPop(:,1) = initPop-1; % Initialize Pop vector 

fprintf(’\nQuantizing\n’); 
for i = 1:trials % i = Current trial 

j = 2; % j = Current quantized step 
k = 1; % k = Current time step of actual data 
while (k < length(A{i}) && j <= initPop) 

%If next actual time > quantized step 
if (A{i}(2,k+1) >= plotTime(j)) 

plotPop(i,j) = A{i}(1,k); % Record population as current 
j = j+1; 

else 
k = k+1; 

end 
end % End trial 

if (mod(i, fix(trials/10))==0) 
fprintf(’.’); % Print out progress dot 

end 
end % End quantizing 

% We take non-zero population entries and find average and variance 
fprintf(’\nFinding Mean and Variance\n’); 
varPop=zeros(1,initPop); % Initialize variance and average vectors 
avgPop=zeros(1,initPop); for i=1:initPop 

w = plotPop(:,i); % w = Use every population run 
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avgPop(i)=mean(w); % Average non-zero values 
varPop(i)=var(w); % Variance of non-zero values 
if (mod(i,fix(initPop/10))==0) 

fprintf(’.’); % Print out progress dot 
end 

end 

% Plot the graphs and label ’em proper 
fprintf(’\nPlotting.\n’); 
idxPaths = 1:ceil(trials/numPaths):trials; % Indices of paths to show 
plotPaths = plotPop(idxPaths,:); % Sample paths to plot 
maxPop = max([max(plotPaths) avgPop]); % Max population for y axis 
maxTime = max(plotTime); figure(’Position’,[100 100 500 500]); 

subplot(2,1,1); hold off 
plot(plotTime,avgPop,’k’,’LineWidth’,2); % Plot the average 
hold on 
[t,Y]=ode45(@diffpop,plotTime,initPop-1); % Plot deterministic 
plot(t,Y,’--r’,’LineWidth’,2); 
stairs(plotTime,plotPaths’,’:’); % Plot the sample paths 
axis([0 maxTime 0 maxPop]); % Set axes and labels 
set(gca,’FontName’,’Courier New’); xlabel(’Time’,’FontName’,’Courier 
New’); ylabel(’Population’,’FontName’,’Courier New’); 
legend(’Average Stochastic’,’Deterministic’,’Sample Paths’,... 

’Location’,’Northeast’); 
title(sprintf(’SI Epidemic Simulation\n %d Trials with Population Size %d, 

and Beta %g\n Average Epidemic Duration %g, \n Maximum Epidemic 
Duration %g, Median Epidemic Duration %g’ ,... 
trials,initPop,contact,avgDuration,maxTime,medianTime)); 

subplot(2,1,2); 
plot(plotTime,varPop,’k’,’LineWidth’,2); % Plot variance 
axis([0 maxTime 0 max(varPop)]); set(gca,’FontName’,’Courier New’); 
xlabel(’Time’,’FontName’,’Courier New’); 
ylabel(’Variance’,’FontName’,’Courier New’); 

hold off 
fprintf(’Took %.2f secs\n’,toc); % Log time 

function dxdt = diffpop(t,x) global contact number dxdt = 
-contact*x*number+contact*x^2; 

A.2 The SIQ Simulation 

% Simple Stochastic Epidemic Model with Catastrophe 
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% AMSSI 2006 - Randy’s Angels 
% Public Domain. Mess with this as much as you want. 
% 
% beta = Contact Constant 
% delta = Preventative Quarentine Constant 
% initPop = Total Initial population 

function SIQ(b,d,initPop,trials) global beta number beta = b; delta 
= d; number = initPop; numCats = 0; quarPop = zeros(1,1); 

numSteps = 40; % Number of graph points to quantize to 
numPaths = 3; % Number of sample paths to plot with average 

% First we generate the population growths and times in their own cell 
fprintf(’Generating %d trials\n’, trials); 
tic; % Start timer 
A=cell(1,trials); % Cell array to avoid a sparse matrix 
for i = 1:trials 

popSusc = zeros(1,initPop); % Initialize population and time vectors 
t = zeros(1,initPop); 
popSusc(1) = initPop - 1; % Fill in initial population and time 
t(1) = 0; 
j = 1; % j = Step counter for current simulation 

% This while loop will run will there is still individuals left 
% This time, maxStep is not critical, because the susceptible 
% population will go to zero in exactly initPop - 1 steps anyway 
while (popSusc(j) > 0) 

% Evaluates the beta constant 
total = beta*(initPop - popSusc(j))*popSusc(j) + delta; 

% Generate new time step and add to current time 
t(j+1) = -log(rand)/total + t(j); % indicates time of next event 

if rand < (beta*(initPop - popSusc(j))*popSusc(j))/total 
% Someone becomes infective 
popSusc(j+1) = popSusc(j) - 1; 

else 
% A quarantine occurs 
popSusc(j+1) = 0; 

% counts the number of quarantines 
numCats = numCats + 1; 
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quarPop(numCats) = popSusc(j); 
% used to keep track of the number saved 

end 

j = j+1;% reassigns the j value 
end 

A{i}=[popSusc(1:j) ; t(1:j)]; % Save pop and time vectors in a cell 
if (mod(i,fix(trials/10))==0) 

fprintf(’.’); % Print out progress dot 
end 

end 

% Keep track of the length of runs and number of steps 
timeLen = zeros(1,trials); % Make a time length vector 

for i=1:trials 
timeLen(i) = A{i}(2,end);%indicates duration of the epidemic 

end 

% stats someone might be interested in 
avgDuration = mean(timeLen); avgSaved = mean(quarPop); totalAvgSaved 
= sum(quarPop)/trials; maxTime=max(timeLen); medianTime = 
median(timeLen); 

% Now we quantize the data into a discrete time interval 
plotTime = linspace(0,maxTime,initPop); % Time vector to plot 
plotPop = zeros(trials,initPop); % Pop vector to plot 
plotPop(:,1) = initPop-1; % Initialize Pop vector 

fprintf(’\nQuantizing\n’); 
for i = 1:trials % i = Current trial 

j = 2; % j = Current quantized step 
k = 1; % k = Current time step of actual data 
while (k < length(A{i}) && j <= initPop) 

%If next actual time > quantized step 
if (A{i}(2,k+1) >= plotTime(j)) 

plotPop(i,j) = A{i}(1,k); % Record population as current 
j = j+1; 

else 
k = k+1; 

end 
end % End trial 

if (mod(i, fix(trials/10))==0) 
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fprintf(’.’); % Print out progress dot 
end 

end % End quantizing 

% We take non-zero population entries and find average and variance 
fprintf(’\nFinding Mean and Variance’); 
varPop=zeros(1,initPop); % Initialize variance and average vectors 
avgPop=zeros(1,initPop); for i=1:initPop 

w = plotPop(:,i); % w = Use every population run 
avgPop(i)=mean(w); % Average non-zero values 
varPop(i)=var(w); % Variance of non-zero values 
if (mod(i,fix(initPop/10))==0) 

fprintf(’.’); % Print out progress dot 
end 

end 

% Plot the graphs and label ’em proper 
fprintf(’\nPlotting.\n’); 
idxPaths = 1:ceil(trials/numPaths):trials; % Indices of paths to show 
plotPaths = plotPop(idxPaths,:); % Sample paths to plot 
maxPop = max([max(plotPaths) avgPop]); % Max population for y axis 
maxTime = max(plotTime); figure(’Position’,[100 100 500 500]); 

subplot(2,1,1); hold off 
plot(plotTime,avgPop,’k’,’LineWidth’,2); % Plot the average 
hold on 
stairs(plotTime,plotPaths’,’:’); % Plot the sample paths 
axis([0 maxTime 0 maxPop]); % Set axes and labels 
set(gca,’FontName’,’Sans serif’,’FontSize’,13); 
xlabel(’Time’,’FontName’,’sans serif’,’FontSize’,13); 
ylabel(’Population’,’FontName’,’sans serif’,’FontSize’,13); 
legend(’Average Stochastic’,’Sample Paths’,... 

’Location’,’Northeast’); 
title(sprintf(’SI Epidemic with Preventative Quarantine Simulation\n %d 

Trials with Population Size %d, Beta %g and Delta %g\n Average 
Epidemic Duration %g \n Cases Ending in Quarantine %d, Expected 
Number Saved %g’ ,... 
trials,initPop,beta,delta,avgDuration,numCats,totalAvgSaved)); 

subplot(2,1,2); 
plot(plotTime,varPop,’k’,’LineWidth’,2); % Plot variance 
axis([0 maxTime 0 max(varPop)]); 
set(gca,’FontName’,’sans serif’,’FontSize’,13); 
xlabel(’Time’,’FontName’,’sans serif’,’FontSize’,13); 
ylabel(’Variance’,’FontName’,’sans serif’,’FontSize’,13); 
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hold off 
fprintf(’Took %.2f secs\n’,toc); % Log time 
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