
Deterministic and Small-World Network 
Models of College Drinking Patterns 

California State Polytechnic University, Pomona 

and 

Loyola Marymount University 

Department of Mathematics Technical Report 

Lorenzo Almada∗ , Roberto Rodriguez, † Melissa Thompson‡ , Lori Voss ,§ 

Laura Smith¶, Erika T. Camachok 

Applied Mathematical Sciences Summer Institute 
Department of Mathematics & Statistics, 

California State Polytechnic University, Pomona 
3801 W. Temple Ave. 
Pomona, CA 91768 

August 2006 

∗University of Georgia 
†North Carolina State University 
‡Central Washington University 
§University of Missouri - Rolla 
¶Western Washington University 
kLoyola Marymount University 

1 



Abstract 

Drinking on college campuses, especially binge drinking, contributes to numerous 
unintentional injuries, sexual assaults, and poor performance in classes. We are inter-
ested in modeling college drinking in order to guide policymakers in the creation of 
laws that will help decrease college binge drinking and its effects. In order to model 
the manner in which college drinking spreads, we have created two different models. 
Our first model modifies a five equation, deterministic, homogeneous, compartmental 
model of college drinking developed by Scribner, et.al. (2006, manuscript). In order 
to consider the dynamics of college drinking, our model assumes that social interac-
tions, social norms, and individual risks are most influential in students’ decisions to 
consume alcohol. We focused our attention on binge drinkers by combining light and 
moderate drinkers into one class and by incorporating the social interactions between 
social drinkers and problem drinkers and between bingers and problem drinkers. As 
part of our investigation, we simulated different alcohol environments by varying the 
parameters. We analyze the implications of this model from both mathematical and 
sociological perspectives. However, we recognize that a homogeneous model of drink-
ing does not accurately represent the individual-to-individual interaction, connection, 
and influence of members of the same group. Hence, we created a second model based 
on graph theory and small-world networks. This model considers a heterogeneously 
mixed population, where students are represented as unique individuals. In particular, 
the effects of clusters, or “clique” groups, are analyzed in relation to the dynamics of 
the system. Finally, we compare our deterministic model with our network model and 
give some recommendations. 

1 Introduction 

Alcohol consumption among college students is one of the most important public health prob-
lems in the United States. Countless studies have been conducted in order to emphasize the 
importance of the reduction of alcohol consumption amongst college students. In 1995, the 
National Institute of Alcohol Abuse and Alcoholism (NIAAA) reported that 88% of college 
students have consumed alcohol, including those under the legal drinking age [1]. Although 
this study was conducted over a decade ago, the rate of alcohol consumption amongst college 
students has not changed. Furthermore, a national survey indicates that 42% of college stu-
dents admit that they have participated in binge drinking [2]. Approximately 25% of college 
students report that they have suffered academic consequences as a result of their drinking 
habits. These consequences include missing classes, falling behind in classes, doing poorly on 
exams and/or papers, and receiving lower grades overall [3]. Around 600,000 college students 
are unintentionally injured each year as a result of alcohol consumption [2]. Additionally, 
nearly 100,000 college students are sexually assaulted or raped because of alcohol misuse 
[3]. Sociologists, government officials, and parents across the country have developed pro-
grams such as Mothers Against Drunk Driving (MADD) and Alcoholics Anonymous (AA) 
in attempts to prevent or reduce this drinking both during and after college. While these 
programs have proven helpful for those with drinking problems, none of the programs have 
significantly reduced the number of students who begin to drink on college campuses across 
the United States. 
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The purpose of this paper is to understand the underlying dynamics behind college drinking 
from the perspective of group–to–group interactions and of the individual agents. To this 
end, we offer two models of college drinking patterns. The first is a deterministic, ordinary 
differential equations, compartmental model that assumes homogeneous mixing. It is based 
on a model developed by Dr. Richard Scribner, MD (Louisiana School of Public Health)and 
his research associates. The second model utilizes small-world networks to model students 
on an individual level and better understand the effect of the individual on the collective 
whole. 

Our paper is divided into seven sections. In Sections 2 through 4, we offer an in-depth anal-
ysis of the dimensionalized deterministic model. We numerically analyze the stability of the 
alcohol-free equilibrium, the sensitivity of the system to parameter changes, and the long-
term behavior of the solutions. While Sections 2 and 3 describe the dimensionalized model, 
Section 4 is specifically devoted to the explanation of the necessity of a non-dimensionalized 
model. In Section 5, we describe the main characteristics of our network model. We describe 
our original ring arrangement model and then explain how we determined the inefficiency of 
this model. We then discuss our reasons for using a random clustering model and explain 
the computer programs that we used to create simulations of this model. By creating these 
mathematical models of the drinking patterns of college students, we hope to better under-
stand the manner in which college students become drinkers. Ideally, we would like to offer 
suggestions to decrease drinking on college campuses. 

2 The Model of Scribner, et al. 

We will first briefly describe the five compartment model developed by Dr. Richard Scribner, 
et al. [4]. In this model of alcohol consumption, drinkers are divided into five compartments 
(or classes): abstainers, light drinkers, moderate drinkers, problem drinkers, and bingers. 
Each compartment is defined by the amount of alcohol consumed in accord with the Na-
tional Institute of Alcohol Abuse and Alcoholism drinker definitions [5]. The abstainer class 
is composed of individuals who consume less than one drink per month. The light drinker 
class consists of individuals who consume 1-13 drinks per month. The moderate drinker 
class is composed of individuals who consume 4-14 drinks per week. Members of the prob-
lem drinker class consume more than two drinks per day. Finally, individuals in the binge 
drinker class consume more than five drinks per sitting [5]. 

Students move in and out of each compartment as a result of dropout or graduation, individ-
ual risk factors, social interactions, and social norms. The dropout and graduation rates are 
modeled together in a single term as a continuous process by which students leave the school 
over the course of the year. Individual risk factors include all of the things that affect an 
individual’s adverse risk level such as marketing, religious beliefs, values, and family back-
ground. These factors exclude peer pressure and the perception of other students’ drinking 
habits (i.e. the college culture). The change in a student’s drinking habits brought about 
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by social interaction is due to direct peer pressure. Social norms affect how students move 
between drinking compartments depending on the student’s perception of what is considered 
socially acceptable or popular in the college culture. All of the parameters that govern the 
movement of individuals from one compartment to another or out of the system depend on 
the wetness of the campus and the environment surrounding the campus. The number of 
total dropouts and graduates at the end of each year is replaced with the freshmen class and 
incoming transfer students at the beginning of the year. The “wetness” in our model repre-
sents the amount of physical and social support that alcohol is given at a particular college 
or university and its surrounding community. At the beginning of each year, the number of 
students who dropped out over the past year is calculated. This number of students is added 
back into the various compartments based on the proportion of the original population in 
each compartment at time t = 0. This aspect of the model developed by Scribner, et al. is 
described by a replacement equation. This will be explained in detail in Section 3. 

2.1 Changes to the Model of Scribner, et al. 

Statistics indicate that binge drinking is a more serious problem than either light drinking or 
moderate drinking [2]. Studies indicate that alcohol consumption by bingers must be reduced 
in order to control overall drinking patterns [1]. Thus, although the model of Scribner, et 
al. describes the dynamics of the college environment well, we believe that the difference 
between light drinkers and moderate drinkers plays an insignificant role in providing any 
insight to this end. Combining the light drinker compartment and the moderate drinker 
compartment into a “social drinker” compartment simplifies the model and directs our focus 
toward the resolution of the main problem—binge drinking. As a result of this modification 
we had to adjust the parameter values that influence the new compartment. 

In addition to combining the light drinker and moderate drinker compartments, we also 
included two social interaction transition terms that were not present in the model of Scrib-
ner, et al.: s23 and s43. These terms represent the social interaction between students in 
the social drinker compartment and the problem drinker compartment (s23) and the social 
interaction between students in the binge drinker compartment and the problem drinker 
compartment (s43). Simulations indicated that the exclusion of these social interaction tran-
sition terms could cause errors in our model because the impact of these social interactions 
on the general drinking population is significant. Small changes in these terms translate to 
large differences in the evolving dynamics of the system. Although it makes the system more 
complex, including these terms allows for a better understanding of the movement between 
compartments that are affected by these terms (i.e., the social drinker compartment, the 
problem drinker compartment, and the binge drinker compartment). See Figure 11. We also 
redefine the parameter sij and made it a rate. In the scriber et. al. model, the sij terms 
have the units of 1 This characteristic of Scribner et. al. makes it impossible to

(time)(population) 
use the same model for various colleges or universities with different populations. In order 
to do so, one must adjust all the sij parameters accordingly without sufficient data on these 
parameter values might be impossible. 
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3 The Four Equation Model 

Following the model of Scribner, et al., we denote the compartment i by Ni. N1 is comprised 
of abstainers, N2 of social drinkers, N3 of problem drinkers, and N4 of binge drinkers. The 
total number of students for a particular campus is denoted by N , where N = N1 + N2 + 
N3 + N4. See Figure 1 for a graphical representation. 

Figure 1: The four equation model in terms of compartments with different transitions 

As mentioned earlier, students move in and out of each compartment due to graduation/dropout, 
individual risk factors, social interactions, and social norms. Each of the reasons that induce 
movement have associated rates. 

The rate at which individuals continuously leave a compartment i due to graduation, trans-
fer to another institution, or dropout is defined by di for i = 1, 2, 3, 4. The change in every 
compartment that results from the dropouts or graduation is proportional to the population 
in every compartment: d1N1, d2N2, d3N3, and d4N4. The transition rates associated with 
individual risk factors describe the rate at which an individual moves from compartment i to 
j due to individual choices and motivations induced by marketing, religious beliefs, family 
values, and personal values. This rate is denoted by rij . Social interactions have an asso-
ciated transition rate, sij . This parameter describes the manner in which individuals move 
from compartment i to compartment j based on direct peer pressure from their friends or 
acquaintances in other compartments. The transition rate associated with social norms is 
defined as the rate at which individuals transition from compartment i to compartment j due 
to their perceptions about college drinking patterns that are considered “normal” or “cool”. 
The change in each compartment brought about by social norms is jointly proportional to 
the current compartment population (in this case i) and the fraction of individuals in all 
other compartments, sij [(

Ni ) + (Nk ) + (Ns )], that influence the populations of individuals
N N N 

dNi ) + (Nk ) + (Nsin group i. Considering only the effect of social norms, ∝ nij [(
Ni )]Ni.dt N N N 

On college campuses, it is not socially “normal” for students to become problem drinkers. 
For this reason, we did not assume that this compartment is affected by social norms in our 
model. 
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All of the rates are functions of the campus wetness, w, a parameter between 0 and 1 that 
represents the amount of physical and social support that alcohol is given at a particular 
college or university. For a given rate kij , this function of wetness is governed by the equation: 

kij (w) = kmin + (kmax − kmin)w, for w² [0, 1] (1)ij ij ij 

For example, if the campus and its surrounding community have lenient alcohol policies, 
this would result in a campus wetness near or equal to 1. When w = 1, the campus 
wetness causes the parameter to reach its maximum value, kij

max . Similarly, if a campus 
has very restrictive alcohol policies, the wetness would be near or equal to 0, and thus, 
kij (w) will be close to its minimum value, kij

min . 

3.0.1 The Resetting Equation 

Following Scribner, et al., we accounted for the incoming freshmen classes and transfer 
students at the beginning of each year with a resetting/pulsed equation. While students are 
continuously leaving a certain compartment, students are added at the beginning of each 
year by the implementation of the resetting equation: 

4 
−Rj (tk+1) = cj [N(0) − 

X 
Ni(tk )] (2) 

i=1 

. 
The function Rj represents the number of students that will be added to each compart-

ment j at the beginning of each academic year,tk+1. To calculate this number for each 
compartment, determine the number of students that dropped out during the year by the 
subtracting the total number of students that remain at the end of year, tk−, from the total 
number of students that the campus began with, N(0). This total number of dropouts is 
then redistributed into each compartment j by the term cj : 

Nj (0) 
cj = . (3)P4 

p=1 Np(0) 

The quantity cj is the initial percentage or fraction of the population that begins in com-
partment j, and we assume that every incoming class is divided into our four compartments 
in accord with these percentages. 

For example, if we have a school with an initial total population of 1000 students, N(0) = 
1000, where 200 students are considered abstainers, 300 students are social drinkers, 60 stu-
dents are problem drinkers, and 440 students are binge drinkers, the cj for each compartment 
are: c1 = 0.2, c2 = 0.3, c3 = 0.06, and c4 = 0.44. At the end of year 0, we find that 180 
students have either graduated or dropped out. Using our replacement equation, and con-
sidering that we must round-off to the nearest integer to account for whole individuals, we 
calculate the number of students joining each compartment is as follows: 
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• 20% of the 180 new students will join the abstainer compartment, increasing this 
compartment’s population by 36 new abstainers. 

• 30% of the 180 new students will join the social drinker compartment, resulting in 54 
more social drinkers. 

• Approximately 6% of the 180 new students will join the problem drinker compartment, 
resulting in 11 new problem drinkers. 

• 44% of the 180 students will join the binge drinker compartment, thus increasing the 
number of binge drinkers by 79. 

3.1 A More Detailed Explanation of our Equations 

dN1 N1N2 N − N1 
= −d1N1 + r21N2 + r31N3 − s12 − n12 N1 (4)

dt N N 
dN2 N1N2 

= −d2N2 − r21N2 − r23N2 − r24N2 + r42N4 + s12 (5)
dt N 

N2N3 N2N4 N − N1 N4−s23 + (s42 − s24) + n12 N1 − n24 N2
N N N N 

dN3 N2N3 N4N3 
= −d3N3 + r23N2 − r31N3 + r43N4 + s23 + s43 (6)

dt N N 
dN4 N2N4 

= −d4N4 + r24N2 − r42N4 − r43N4 + (s24 − s42) (7)
dt N 

N4N3 N4−s43 + n24 N2
N N 

4 
−Rj (tk+1) = cj [N(0) − 

X 
Ni(tk )] (8) 

i=1 

N(t) = N1(t) + N2(t) + N3(t) + N4(t) (9) 

Where tk+1 and tk 
− represent the beginning of year k + 1 and the end of year k, respectively. 

It can also be noted that N(0) is the total initial population, and 

Nj (0) 
cj = for j = 1, 2, 3, 4 

N(0) 

is the proportion of the initial population in compartment j. 

To better illustrate the impact of all alcohol inducing factors under consideration in this 
paper we will explain in detail one of the equations of our mathematical model. We take a 
closer look at the first equation of the system of equations (1) - (5), 

dN1 N1N2 N − N1 
= −d1N1 + r21N2 + r31N3 − s12 − n12 N1,

dt N N 
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and analyze it in detail to illustrate the role that each term plays in the change of the 
abstainer population over time. 

The first term on the right hand side of the equation, −d1N1, represents the propor-
tion of the abstainer population that leaves the abstainer compartment due to dropout or 
graduation. This term is negative since students are leaving the compartment. The sec-
ond and third terms on the right hand side of the equation, +r21N2 + r31N3, are added to 
the equation to represent the movement of students into the abstainer compartment, N1, 
from the social drinker compartment, N2, and the problem drinker compartment, N4, due 
to individual risk factors. The fourth term, −s12 

N1 
N
N2 , represents the movement of students 

from the abstainer compartment, N1, to the social drinker compartment N2 due to social 
interaction with individuals in compartment, N2. This is modeled using the framework of 
epidemiology. Its representation utilizes the law of mass action to show that the interaction 
between two groups leads to the spread of alcohol consumption similar to the spread of a 
disease where the transmission depends on the proportion of infected individuals and the 
number of susceptible persons [6]. The final term, −n12 

N− 
N

N1 N1, represents the students that 
leave the abstainer compartment due to the their perceptions of the social norm of drinking 

N2 N3 N4at the college or university that they attend. Note that N−N1 = + + . The remaining 
N N N N 

three equations can be described analogously. 

3.2 Stability Analysis 

3.2.1 Equilibrium with the Occurrence of Alcohol Consumption 

The resetting equation component of the model leads to periodic long-term behavior, how-
ever, there is no closed form for the equilibrium. For this reason, we must resort to numerical 
means in order to find an approximation of the equilibrium for this system. We assume that 
an equilibrium is reached when the difference between two peaks or troughs is below a 
given tolerance level. In our case, we set the tolerance equal to 0.9. We utilized the ode45 
function in Matlab to verify that an equilibrium, as defined by our criteria, had been reached. 

We integrated the system of equations for a fixed set of initial conditions and parameter 
values based on our understanding of the distribution of alcohol consumption on college 
campuses. These initial parameters are as follows: 

r21 = 0.1, r23 = 0.005, r24 = 0.26, r31 = 0.1, r42 = 0.25, r43 = 0.01, 

s12 = 0.0014, s23 = 0.0001, s24 = 0.0016, s42 = 0.0015, s43 = 0.0002, (10) 

n12 = 0.09, n24 = 0.1 

We assumed an initial population distribution with 200 abstainers (N1 = 200), 600 social 
drinkers (N2 = 600), 25 problem drinkers (N3 = 25), and 300 binge drinkers (N4 = 300). 
First, we consider the peaks in each compartment for each year. These peaks occur at the 
beginning of the new academic year because the resetting equation replenishes the number 
of individuals that left each compartment due to dropout or graduation with the new incom-
ing students. We look at the peak number of students in each compartment for every two 
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⎜ ⎟

consecutive years, i and i+1. We calculate the difference and consider only the largest differ-
ence. As long as this difference is above our tolerance, we continue to search for equilibrium. 
Once this equilibrium has been reached, all four compartments satisfy our tolerance level. 
Given the above initial conditions, parameter values, and a tolerance of 2, the equilibrium 
is reached at the end of the twentieth year and the beginning of the twenty-first year. This 
means that after twenty years, the net number of students moving between compartments 
is less than 2 (See Figure 2). 

Similarly, for a tolerance of 0.9, equilibrium is reached at the end of the twenty-eighth year 
and the beginning of the twenty-ninth year. This means that the net number of students 
moving between compartments at the end of the twenty-eighth year is less than 0.9 (See 
Figure 2). 

Figure 2: Equilibria for tolerances of 0.9 and 2 for the four equation model using the standard initial 
conditions and parameter values. 

3.2.2 Alcohol–Free Equilibrium 

In order to obtain more insight into the behavior of the four equation model, we remove 
the resetting equation and the dropout rates from all equations and analyze the point of 
alcohol–free equilibrium (N1 = N1, N2 = 0, N3 = 0, N4 = 0). Using Maple, we calculated the 
Jacobian matrix and evaluated it at this equilibrium point: 

⎛ 
0 −n12 − s12N1 + r21 −n12 + r31 −n12 

⎞ 

0 n12 + s12N1 − r23 − r24 − r21 n12 n12 + r42J = . (11)⎜ 
0 r23 −r31 r43 

⎟⎝ ⎠
0 r24 0 −r43 − r42 
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⎜ ⎟

For realistic parameter values and population sizes, the stability of the system is almost 
entirely dependent on the s12N1 term since the other entries of the matrix are so small in 
comparison. For this reason, our numerical analysis of this matrix mainly focuses on the 
variation of the values of this term. 

Using the same parameter values that are used in our Matlab simulations, we substitute 
values from the ranges of 

ŝ12 = [.01, .8], r21 = [.2, .09], d1 = 0.1, n12 = [.08, 1], (12) 

ŝ24 = [.1, .7], r42 = [.2, .08], d2 = 0.2, n24 = [.08, .1], 

ŝ42 = [0.4, .1], r24 = [.01, .15], d3 = 0.2, 

ŝ23 = [.01, .2], r23 = [.05, .1], d4 = 0.2, 

ŝ43 = [.01, .2], r31 = [.8, .5], 

r43 = [.05, .08] 

into (1) to determine the eigenvalues. Using the minimum values of the ranges, for example, 
we obtain 

⎛ 
0 −0.08 − s12N1 + 0.2 −0.08 + 0.8 −0.08 

⎞ 

0 0.08 + s12N1 − 0.05 − 0.01 − 0.2 0.08 0.08 + 0.2 
J = . (13)⎜ 

0 0.05 −0.8 0.05 
⎟⎝ ⎠

0 0.01 0 −0.05 − 0.2 

A reasonable minimum for s12 is 0.4, which implies that there are only five abstainers within 
the entire school. 

We vary the product s12N1 over a wide range of reasonable values while all other parameters 
are held constant within the ranges that are given above. If s12N1 is greater than its reason-
able minimum, the alcohol–free equilibrium point is an unstable node. All other parameters 
are then varied individually to determine whether they affect the stability of the alcohol–free 
equilibrium point. For the above parameter ranges, it is not possible for this equilibrium 
point to be anything other than an unstable node. The instability of the alcohol–free equi-
librium point for these parameter values indicates that is highly unlikely for a state to exist 
in which there are only abstainers. 

4 Four Equation Non-Dimensionalized Model 

4.1 Non-Dimensionalization 

It is important to have a model that accounts for schools of any given size. While conducting 
trial simulations, we determined that the dimensional model gives drastically different an-
swers for small versus large schools because of the dependence of every term of the equations 
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on the population. In order to remove this dependence, we non-dimensionalized the model 
with respect to population. 

To non-dimensionalize Equations (1)—(4), let Pi = N
N 

i , where N = N1 + N2 + N3 + N4 

represents the total population at time t, and Ni represents the number of students in 
compartment i. Thus, Pi represents the proportion of students in each compartment i. Since 

1 sijthe sij terms are in units of sij = to remove this parameter’s
time · population

, we set ˆ 
N 

dependence on population. Since Pi = N
N 

i , we see that Ni = N · Pi. Taking the derivatives 
of both sides of the equation gives the following: 

X 

Ni 
0 = Pi 

0N + PiN
0 . (14) 

We see that N 0 = − 
P

i 
4
=1(diNi). Through non-dimensionalization, 

4 4X
N 0 = − (diNPi) = −N (diNi) 

X 

i=1 i=1 

. 
Substituting for Ni and N , we obtain the following system of equations that is independent 
of population size: 

4
dP1 

= −d1P1 + r21P2 + r31P3 − ŝ12P1P2 − n12(1 − P1)P1 + P1 (diPi) (15)
dt 

X 

i=1 

dP2 
= −d2P2 − r21P2 − r23P2 − r24P2 + r42P4 + ŝ12P1P2 − ŝ23P2P3 (16)

dt 
4 

+(ŝ42 − ŝ24)P2P4 + n12(1 − P1)P1 − n24P4P2 + P2 (diPi) 
i=1 

X 

X 

4 

i=1 

dP4 
= −d4P4 + r24P2 − r42P4 − r43P4 + (ŝ24 − ŝ42)P2P4 − ŝ43P4P3 (18)

dt 
4 

dP3 
= −d3P3 + r23P2 − r31P3 + r43P4 + ŝ23P2P3 + ŝ43P4P3 + P3 (diPi) (17)

dt 

+n24P4P2 + P4 (diPi) 
i=1 

Equations (3)—(6) now represent the rates of change of the proportions of students with 
respect to the total population within each compartment. Since all compartment popula-
tions are represented by proportions, schools of all sizes can be modeled without altering the 
parameters to account for changing population sizes. 

Similarly, the resetting equations had to be non-dimensionlized with respect to population. 
As stated earlier, the purpose of the resetting equation is to replace the students that dropped 
out of the school during the year at the beginning of the next school year. Since this is 
completely dependent on the proportion of students who drop out, we must keep track of 
these students in order to accurately reset the model at the beginning of each year. For 
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the purposes of resetting, we created an equation Nd that represents the total number of 
students who drop out from all four compartments. Note that 

N 0 (19)d = −d1N1 − d2N2 − d1N1 − d1N1 − d3N3 − d4N4. 

All five equations that are used can be represented in the following manner: Ns = N1 + 
N2 + N3 + N4 + Nd. Notice that Ns remains constant since there are no students leaving the 
system. Hence, Ns = N(0). We can also non-dimensionalize Nd by letting Pd = N

N 
d

s 
. Thus, 

the rate of change of the proportion of dropouts becomes 
4

dPd 
= (1 − Pd) 

X
(diPi). (20)

dt 
i=1 

Replacing the proportion of the total population for each compartment at the beginning of 
year k + 1 requires knowing the proportion of students who dropped out between year k and 
year k + 1. At the beginning of year k, we have Pd(tk) = 0, while at the end of year k, we 
have Pd(tk), and thus, 1 − Pd(tk) is the proportion of the total population that remains in 
school. For year k + 1, the initial proportion of students in each class is given by: 

Pi(tk+1) = [1 − Pd(tk)]Pi(tk) + ciPd(tk), for each i = 1, 2, 3, 4. (21) 

Multiplying the 1 − Pd(tk) term by Pi(tk) scales the proportion of each compartment i, 
thus adjusting for the incoming class. The final term ciPd(tk) calculates the proportion of 
the incoming class that goes into each compartment i at the beginning of year k + 1, where 
ci is the initial (t = 0) proportion of students in each compartment. The replacing of each 
compartment is thus given by the change between Pi(tk) and Pi(tk+1), as shown below: 

ΔPi(tk) = Pi(tk+1) − Pi(tk) = [ci − Pi(tk)]Pd(tk). (22) 

4.2 Graphical Simulations 

With the four equation model now non-dimensionalized, we determine appropriate ranges for 
all parameter values and test the validity of the overall system. Parameters for a five equa-
tion dimensional model were received courtesy of Dr. Benjamin Fitzpatrick. These values 
were determined by social scientists and medical doctors from Louisiana State University. Al-
though these ranges were carefully selected, their effectiveness was limited to relatively small 
campus populations of approximately 1,000 students. Since our new non-dimensionalized 
model no longer depended on population, we adjusted the values Dr. Fitzpatrick provided 
to account for this. The final ranges that we determined are as follows: 

ŝ12 = [.01, .8], r21 = [.2, .09], d1 = 0.1, n12 = [.08, .1], 

ŝ24 = [.1, .7], r42 = [.2, .08], d2 = 0.2, n24 = [.08, .1], 

ŝ42 = [0.4, .1], r24 = [.01, .15], d3 = 0.2, 

ŝ23 = [.01, .2], r23 = [.05, .1], d4 = 0.2, 

ŝ43 = [.01, .2], r31 = [.8, .5], 

r43 = [.05, .08] 
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Figure 3: As s12 varies, abstainers become Figure 4: As r42 varies, bingers remain 
social drinkers due to social interaction. in the bingeing compartment and no longer 

become social drinkers due to individual 
risk. 

4.2.1 Varying Parameter Values 

To ensure that all parameters have a significant effect on the model and that the above 
ranges are accurate, every parameter range was varied over multiple values. In order to vary 
a parameter and observe its effects, all other values are held constant using a wetness of 
0.5 (See Equation (6)) and initial conditions of P1 = 0.2, P2 = 0.3, P3 = 0.06, P4 = 0.44. 
For example, varying only the s12 (social interaction) parameter from its minimum to its 
maximum value causes the proportion of abstainers to visibly decrease as the proportion of 
social drinkers increases, see Figure 3. This particular type of variation informs campus pol-
icymakers that restricting social interactions with alcohol can help decrease the proportion 
of social drinkers attending the school. 

Varying r42 shows the effects of individual risk involved with moving from binge drinking 
to social drinking. By varying this parameter value from its minimum to its maximum the 
graph illustrates that the more accessible alcohol is on campus, the more likely social drinkers 
will be to become binge drinkers due to their individual risk, see Figure 4. 

Similarly, varying n24 from its minimum value to its maximum value illustrates the social 
drinkers becoming binge drinkers due to their perceptions of the percent of students in 
the school who are binge drinking, see Figure 5. As this perception increases, we see an 
increase in the proportion of students actually binge drinking. According to these results, if 
schools can decrease students’ perceptions of binge drinking, the policymakers will be able 
to decrease binge drinking overall. 

4.2.2 Varying Wetness 

We first varied the wetness parameter for a school with proportions of student drinkers sim-
ilar to the national average: P1 = 0.2, P2 = 0.3, P3 = 0.06, P4 = 0.44, see Figure 6. With 
a wetness parameter of 0.1, there is only an increase in the proportion of abstainers in the 
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Figure 5: As n24 varies, social drinkers 
become bingers due to changing perceptions 

social norms. 
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Figure 6: A typical proportion of student 
drinkers with varying wetness. 
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Figure 7: At 60% of the population, Figure 8: Even with 60% of the student 
bingers remain the majority of student body as problem drinkers, bingers still be-
drinkers. P1(0) = 0.14, P2(0) = 0.2, P3(0) = come the majority. P1(0) = 0.14, P2(0) = 
0.06, P4(0) = 0.6 0.2, P3(0) = 0.6, P4(0) = 0.06 
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school. This is reasonable since abstainers are dropping out at a slower rate than all other 
compartments and alcohol is not easily accessible in the college atmosphere to encourage 
drinking. As wetness increases, the proportion of abstainers and social drinkers begins to 
decrease while the proportion of problem drinkers and binge drinkers increases, as expected. 

When looking at a school where abstainers begin as the majority, a wetness parameter of 
0.1 causes abstainers and social drinkers to increase slightly, while problem drinkers and 
binge drinkers decrease, see Figure ??. As the wetness increases, abstainers decrease, both 
problem drinkers and binge drinkers increase, and social drinkers increase initially, and then 
rapidly decrease before reaching periodic equilibrium. 

With a school where the majority of the initial population is binge drinkers and the wetness 
is low, the abstainers and the social drinkers initially increase, whereas the problem drinkers 
and the binge drinkers initially decrease, see Figure 7. However, as the wetness increases, 
the binge drinkers decrease at a slower rate until the increase in wetness of the school causes 
the binge drinking population to increase in size. The increase in wetness also causes the 
social drinkers and abstainers to increase at a slower rate until it causes the social drinkers 
and abstainers to decrease. 

Then, we simulated a school where the majority of the student body is problem drinkers, see 
Figure 8. At a school with a wetness parameter of 0.1, alcohol consumption is not supported, 
and problem drinkers are driven to become abstainers. When the wetness is at least 0.3, the 
difference between abstainers and problem drinkers is decreasing, which suggests that more 
students can remain alcoholics. With a wetness of 0.6, social drinkers become the majority, 
while abstainers and problem drinkers decrease. Since the model does not allow problem 
drinkers to directly become social drinkers, it seems that problem drinkers are moving to so-
cial drinkers after becoming members of the abstainer compartment as a result of attending 
programs such Alcoholics Anonymous. With a wetness of 0.9, bingers become the majority, 
while problem drinkers form the second largest compartment. It seems that problem drinkers 
are again moving through the drinking compartments through the abstainer compartments, 
this time to become bingers. 

Next, we examined a school where the majority of the population is social drinkers, which 
is perhaps the most common case, see Figure 9. Under a wetness of 0.1, abstainers have a 
small majority over the social drinkers since alcohol consumption is not supported. As the 
wetness varies to 0.3, social drinkers have a significant majority over the abstainers. This 
suggests that even under mildly supportive conditions for alcohol, social drinking will pre-
vail. As wetness increases to 0.6, social drinkers are converted to bingers since alcohol use is 
supported to a greater extent. This condition is even more extreme as wetness increases to 
0.9. 

It appears that regardless of the initial population, bingers will always become the major-
ity. This supports our original hypothesis that binge drinking is the most influential of all 
drinking compartments. 
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Figure 9: With an initial population of 60% social drinkers, bingers still become the majority. P1(0) = 
0.14, P2(0) = 0.6, P3(0) = 0.06, P4(0) = 0.2 

4.2.3 Equilibrium 

In addition to varying the initial population proportions, of our simulations, we also calcu-
lated the stability of the simulations. To do this, we compared the peaks and troughs of each 
period of replacing of students with the respective peaks and troughs of the previous year 
in each compartment. When the compartment with the greatest peak or trough difference 
reached a given tolerance level, we concluded that equilibrium had been reached. 

Using the same proportion of drinkers and abstainers that follows the national average, a 
tolerance level of 0.009, and wetness of 0, the school reaches equilibrium at the end of the 
tenth year and the beginning of the eleventh year, see Figure 10. This means that the pro-
portion of students in each compartment does not fluctuate significantly after the tenth year. 

If we change our wetness parameter to an average value of 0.5, the stability is reached within 
two to three years, see Figure 11. 

Finally, we analyzed the periodic stability of the model with a wetness of 1. In contrast 
to a wetness of zero, equilibrium is reached in only four to five years. Since the difference 
between the initial and final conditions is much less then when wetness is zero, equilibrium 
is reached at a faster rate, see Figure 12. 

16 



0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (years)

P
ro

po
rt

io
na

l P
op

ul
at

io
n 

S
iz

e

Proportional Population Size vs. Time with Resetting and Wetness of 0

P1 = Abstainers
P2 = Social Drinkers
P3 = Problem Drinkers
P4 = Binge Drinkers

Given Tolerance = 0.009
Periodic Equilibrium
reached
at year 11

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (years)

P
ro

po
rt

io
na

l P
op

ul
at

io
n 

S
iz

e

Proportional Population Size vs. Time with Resetting and Wetness of 1

P1 = Abstainers
P2 = Social Drinkers
P3 = Problem Drinkers
P4 = Binge DrinkersGiven Tolerance = 0.009

Periodic Equilibrium reached
at end of year 4 beginning of
year 5
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Figure 12: Equilibrium is reached in 4 to 
5 years. 

5 The Small-World Network Model 

5.1 A Network Model 

Now that we have looked at the four equation compartmental model and have gained a 
better understanding of the role of the rates and have identified the key parameters in a 
homogeneous population, we turn our attention toward a small-world network model in or-
der to better understand a heterogeneous population. There are four different categories of 
small-world networks: social networks, information networks, technological networks, and 
biological networks. A social network is defined to be “a set of people or groups of people 
with some pattern of contacts or interactions between them” [7]. Since we are modeling 
the interactions of college students, we use the framework of social networks. This type of 
model builds and creates different individuals defined by a set of characteristics and connects 
them to each other in a way that defines our network. Since cliques are predominant in a 
college population we focus our efforts toward creating a model that includes these groups 
along with a few random connections. Such a network model would alow us to illustrate the 
individual-to-individual interactions and the effect of an individual on the dynamics of the 
entire population by means of the internal connections in each clique and the connections 
between cliques. 

In order to understand small-world networks, we must first define a few key terms. Graph 
theory is the field of mathematics in which graphs and, by extension, small-world networks 
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are studied. A graph is “a collection of points and lines connecting some (possibly empty) 
subset of them” [8], and a small-world network is a particular type of graph. Every network 
is composed of vertices and edges. A vertex is the rudimentary unit of a network and is 
represented by a dot. Edges are the lines that connect every two vertices. If a graph is rep-
resenting a network, undirected edges are used to define connections between vertices. When 
things are flowing to a particular vertex,directed edges are used. A network is complete or 
fully connected if every vertex is connected to every other vertex. Finally, a cluster is subset 
of vertices within a graph that are complete or nearly complete [7]. 

In our small-world network model, the graph or network represents the entire student pop-
ulation at a college or university. Each vertex symbolizes an individual student, and an 
edge between two vertices represents an acquaintance relationship between the two students. 
To model the various social cliques and groups of students at a college campus, we want 
random-clusters.A cluster in our model represents a group of students who are very tightly 
connected. As a result of their tight connection, every group or clique member will have a 
greater influence on the other members in the clique. 

5.2 Individualizing the Students 

To individualize the students, each individual needed to have specific attributes. To accom-
plish this, we assigned a compartment number, m, and a change variable, c, to each student. 
The compartment number, m, is either 1, 2, 3, or 4 depending on whether the student is an 
abstainer, a social drinker, a problem drinker, or a binger, respectively. The change variable, 
c defines the unlikeliness for an individual to change or move to another compartment due 
to peer pressure or his/her perspective of what is popular or accepted by his/her circle of 
friends. For the remainder of this paper we will assume that an individual’s vulnerability to 
change is inversely related to his/her ability to change others. Thus, the lower the change 
variable, c, the more likely he/she is to change compartments and the more unable he/she is 
to influence others to change. This attribute allows for individuals within a drinking com-
partment to be differentiated from each other. The change variable,c, is a random number 
that is chosen from a beta distribution, whose probability density function is: 
The probability density function of the beta distribution is defined as: 

F (x) = 
1

(x α−1)(1 − x)β−1 

B(α, β) 

with 0 < x < 1 and where 
Z 1 

B(α, β) = tα−1(1 − t)β−1dt, 
0 

for α and β > 0. [9]. For a given α and β we obtain a particular probability distribution and 
from there randomly select a change variable, c, for each student. In this paper, we will use 
a beta distribution with α = .41 and β = 1.67, see Figure 13. These constants were chosen 
particularly because this allows us to randomly assign lower c values to a greater number of 
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students. Recall we assume that people are typically very easily influenced by their peers and 
the social norms of their school, therefore the tendency to change will be more likely for most 
individuals. The change variable, c as chosen from the beta distribution with B(.41, 1.67) 
mathematically models this assumption. Because of the inverse relationship between vulner-
ability to change and ability to induce change, the graph demonstrates that a student who is 
easily influenced to change is also not able to easily influence others to change and vice versa. 

Along with the change variable, a student is given a position in the unit square (i.e., 
[0, 1] × [0, 1]). The x-coordinates and y-coordinates that determine students’ positions are 
determined using uniform distributions in the interval [0, 1] and allow each student to be 
placed in an exact location within the unit square. This placement is important in order to 
calculate the distance between two students. In order to form non-random clusters, we will 
need to specify different circles of a certain radius and connect all the vertices (in this case 
students) within the circle. Each student is assigned to one of the four compartment num-
bers similar to those used in the deterministic model: m = 1 if the student is an abstainer, 
m = 2 if the students is a social drinker, m = 3 if the student is a problem drinkers, and 
m = 4 if the student is a binger. Students are placed in a compartment by choosing a radius 
from a uniform distribution. Since initially, students have to randomly be placed in one 
drinking compartment, these compartments are defined by intervals in the [0,1] range. The 
initial compartment placements are based on percentages from national drinking averages 
on college campuses [2]. Since these averages at colleges and universities are approximately 
20% abstainers, 30% social drinkers, 44% binge drinkers, and 6% problem drinkers, we 
use the following ranges: Abstainers = [0, .2), Social Drinkers = [.2, .5),Binge Drinkers = 
[.5, .94), Problem Drinkers = [.94, 1] Students are placed into these compartments by first 
calculating ni, the number of students that are needed in compartment i where i = abstain-
ers, social drinkers, problem drinkers, and binge drinkers: 

n = (total number of students)( proportion of students in compartment i). 

We then randomly choose ni numbers between [0,1]. These random numbers are then scaled 
to the appropriate ranges for the compartment, i, that we are building. After giving students 
decimal representations, students are given whole number representations for their respective 
compartments in an effort to keep the programming as simple as possible. As mentioned 
earlier, these compartments are numbered m = 1, 2, 3, 4. are numbered as follows: Abstainers 
= 1, Social Drinkers = 2, Problem Drinkers = 3, Binge Drinkers = 4. 

5.3 Developing Connections Between Students 

To build the small-world network, we build both random and clustered connections. When 
only random connections exist in a system, it is expected that the distribution of connections 
follow a power law. 
If the students are only connected through clusters, the model does not accurately represent 
the college atmosphere because it ignores the unexpected connections that exist between 
students from different cliques but that know each other and share common interests. Many 
college students interact with multiple “social circles” and are, therefore, included in and 
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connected to more than one cluster. A small number of random connections allows for the 
interactions between multiple social circles. 

In order to create the random-clustering model, we first assume a particular population of 
students. In order to create connections between these students, we assume that an imagi-
nary circle with a particular radius exists around each vertex (i.e. student). If another vertex 
exists within the “circle”, then the two students form a connection. Since we recognize that 
students have multiple “circles” of friends, we create ln (N), where N = the total population, 
random connections between the students. 

After the two types of connections are formed, we have created a small-world network in 
which students are connected across the graph in addition to the connections with their 
neighbors. Next, we consider all of the students as individuals and count the number of 
connections for each student. This number of connections then becomes another defining 
parameter, f for each student. Due to the clustering connections, the distribution no longer 
follows a power law. 

5.4 Changing the Network 

In the process of building this network, we have made two crucial assumptions: 

1. Any student in any compartment has the ability to move to any other compartment. 

2. A student’s ability to change another student is affected by the compartment that the 
influential student occupies. 

Although these assumptions do not completely emulate the actual population of college and 
university students, these assumptions were allowed for the sake of simplicity. 

To show the students’ progressions of movement between compartments, we need to deter-
mine the manner in which students interact and the way that they are influenced to change 
by the students who surround them. 

First, we consider one student, wi, and calculate the influences from the peers to whom 
he is connected, say wj for j = 1, . . . , k. This calculation considers the change variable, 
ci, for the student and the change variables for the student’s peers, cj , where j = 1, . . . , k 
is a student near the student, a number between 1 and k. This is done by comparing thePk 

j=1 cj
averages of the change variables of student’s peers, 

k > ci, to the student’s own change 
variable cj .Pk Pk 

j=1 cj j=1 cj
If 

k < ci, we move onto the next student. However, if 
k ≥ ci, a change will 

occur in student wi. We then calculate the compartment to which student wi will move by 
considering the compartments of his k peers, mj for j = 1, . . . , k and his own mi. The new 
compartment of student wi is defined in decimal form by: 

Pk mj + mij=1 
= new compartment for wi. (23)

k + 1 
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We then change wi’s new compartment given by (22) to its integer value as explained in 
Section 6.2. 

6 Validation of the Network Model 

6.1 Network Simulations without Restrictions 

In order to obtain preliminary results for a network model that semi-simulates the effect of 
dropouts and individual risk factors, we allow a student drinker in any drinking compartment 
to move to any other compartment through social interactions. We understand that dropouts 
and individual risk factores are intrinsic movements and not cause by social factors, but 
hope to gain some insight to the evolution of the process by making this assumption. Also, 
a student’s ability to change another student is influenced by the compartment that the 
influential student occupies. We allow binge drinkers to be most influential of all drinkers, 
followed by social drinkers, abstainers, and problem drinkers. This assumption is made 
because binge and social drinkers typically drink with others which allows them to be more 
easily influenced. Problem drinkers typically drink alone and are, therefore, least influenced 
by others. 
For a standard population of 20% abstainers, 30% social drinkers, 6% problem drinkers, and 
44% binge drinkers, simulations predict that nearly the entire student body will become 
social and binge drinkers, see figures 17, 18 and 19). Whether the social or binge drinkers 
become the majority is dependent on the the clustering of the student drinkers. If clusters of 
binge drinkers form from super-connected bingers, the binge drinkers will ultimately become 
the majority population. The case is similar for the social drinkers. We see these dynamics 
because if anyone is super-connected, they will have a much greater influence on the other 
members of their cliques. 
Since the final outcome of the drinking population seems to depend on clustering, we varied 
the connection radius and noted its changes on the dynamics of the system. Increasing the 
radius increases the level of connectivity and creates larger clusters of drinkers. Eventually, 
these increasingly large clusters begin to merge into a single cluster that behaves more as a 
homogeneous system. Extreme interconnectedness also causes the entire student population 
to become the same type of student drinkers. The specific compartment that becomes the 
majority varies from simulation to simulation since a single drinker can change the status of 
the remaining population. This ability of a single drinker to convince others also causes more 
rapid changes in drinking status among students. Of the four types of student drinkers, it 
seems that social drinkers and binge drinkers are the most influential since they form groups 
of convincing students most often. 
From the model, we can see that extreme interconnectivity causes dramatic changes in 
the dynamics of the system as well as the time it takes for a steady-state to be reached. 
Various recommendations can be made to colleges and universities based on our model of 
student drinking. First of all, it seems that clusters of student drinkers are able to have the 
most influence on the entire campus populations. To reduce drinking levels, administrators 
can use this information to construct clusters of abstainers that should encourage other 
students to become abstainers. They can also isolate clusters of drinkers, such as fraternities, 
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from the remainder of the population and prevent their drinking habits from spreading to 
other students. Since social interaction can control drinking patterns, administrators should 
organize social activities that promote interaction using alcohol-free environments such as 
intermural sports, theater, concerts, etc. 

6.2 Changes to the Models 

In order to compare the deterministic and small-world network models, we must adjust each 
model to accommodate for the differences and similarities between the two. 

Movement due to individual risk factors is not considered in the network model because 
these are intrinsic, not caused by social factors. The movement in the network model is 
based on the students who are connected to a particular student. Thus, we can only con-
sider the changes that occur because of the social interaction parameters and the social norm 
parameters in the deterministic model. Furthermore, the dropout/graduation rate cannot 
be considered in the network model because we are not creating or destroying students (rep-
resented by vertices) or the acquaintance relationships between the students (represented by 
edges) once the process has begun. These restrictions force the rij and the di terms to be set 
to zero in the deterministic model. Since the di terms are no longer included, the resetting 
equation has no effect because there is no change in the total population. 

We must restrict the movement between compartments in the small-world network model so 
that it reflects the restricted movements in the deterministic model. Without compartmental 
movement restrictions in the small-world network model, the students are free to move from 
any compartment to any other compartment. For example, a student who is a binge drinker 
could become an abstainer in a single time step due to social interaction. In this model, a 
time step has the units of 1 - 2 years. The deterministic model has unit steps much smaller 
and therefore does not allow for a social interaction change of this magnitude, so we must re-
move this option in the small-world network model in order to compare the two models. We 
calculate the possibility of change and the compartment to which the student would move, 
but if the calculations indicate that the student should move to the abstainer compartment, 
he or she is forced to move to the social drinker compartment instead. Another change to 
the small-world network model is the restriction of movement once a student has reached 
the problem drinker compartment. Since our deterministic model only allows movement to 
occur between the problem drinker compartment and the abstainer compartment as a result 
of no individual risk factors, we must reflect this in the small-world network model. In order 
to do this, we skip the problem drinkers in our calculations. Since the problem drinkers 
are not moving out of their compartment due to social interactions or social norms, there is 
no reason to consider the possibility of change or movement, their change calculations are 
skipped. However, the problem drinkers still have the abilities to influence other students 
in the model, so they are still considered in the calculations of the influences they have 
on other students who are connected to them. Another important change is the removal 
of the change variable. The change variable gives our model heterogeneity and defines the 
vulnerability to change. Without this change variable, the students are only defined by their 
compartments, and thus, the small-world network model behaves in a manner that is more 
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like the deterministic model. To accommodate for the homogeneity, we must also connect 
every student to every other student in the graph. This gives us a complete graph for the 
network. 

6.3 Model Comparison 

After completing the adjustments to the deterministic model as described above, we com-
pared the final results of both models to ensure that the network model accurately describes 
college drinking patterns using homogeneous mixing. (See Figures 20,21, 22, 23, and 24). 
Our first comparison examined the similarities and differences between the deterministic 
model and a network model of complete connectedness and homogeneity. In its final state, 
the modified deterministic model predicts that the entire student population will eventually 
become problem drinkers. As this model approaches its final state, binge drinkers remain 
a significant proportion of the population while abstainers and social drinkers convert to 
problem drinkers much more rapidly. In the final state of the network model, the entire stu-
dent population will again become problem drinkers. However, the transition to this state 
is somewhat different from the deterministic model. As time progresses the social drinkers 
unrealistically become 75% of the student body population. In the deterministic model, the 
maximum proportion of social drinkers is a mere 35%. As it approaches its final state, the 
network model also predicts that the only drinkers remaining will be problem drinkers and 
binge drinkers. Overall, both models conclude that when drinking patterns are controlled 
only by social parameters, the entire student population will consist of problem drinkers. 

Our second comparison examined the same deterministic model as before, but used a network 
model of nearly complete connectedness and homogeneity. As the nearly complete network 
model progresses, most students still become problem drinkers but do so over a larger num-
ber of time steps (See figures 25, 26 and 27). At its final state, a small percentage of students 
still remain as binge drinkers while all other students have become problem drinkers (See 
figure 28). Since the model no longer accounts for homogenous interaction, a small number 
of students lack complete connectedness to the remaining student body. It is their lack of 
connections that allow them to remain as binge drinkers and refrain from becoming problem 
drinkers. 

Based on these comparisons, a network model of college drinking patterns provides infor-
mation that cannot be accounted for in the deterministic model. For instance, the network 
model reveals that a student’s drinking classification depends on their connections with 
other students. Students that are completely connected are more likely to convert to the 
same drinking compartment as the students they are connected with, while students without 
any connections are unable to change. 
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7 Conclusions 

From the analysis developed in the first half of this paper, many things can be concluded 
about the four equation, deterministic model. First, the social influence and social norm 
parameters have the greatest influence on the way students move throughout the compart-
ments. Along with these influences, the wetness of a school and its surrounding community 
significantly changes how quickly equilibrium is reached. With a higher wetness value we can 
also see that there are typically more binger students and this compartment always has the 
most students no matter what the initial conditions. After stability analysis, it can also be 
seen that an alcohol-free equilibrium is unstable and a student population will not typically 
stay alcohol-free. 
In the analysis of the small-world network model we found that the connectivity of a network 
has the greatest influence on the tendencies of the system. For the networks that have larger 
“cliques” or a greater radius of connection, an alcoholic stability is reached much sooner. 
In comparing the two models we verifed the individual conclusions from each and found 
that eventually both models show the same results, though not necessarily in the same 
amount of time because we could not specify an exact time step for the network model. 
We also concluded that the small-world network model more accurately represents a college 
population because of its heterogeneity versus the homogeneity of the deterministic model. 

8 Future Work 

In the future, work could be done to compare the results from the deterministic model to data 
collected from surveys of college students. Comparing this data can give more insight into 
the parameter values and long-term effects of these changes. For the small-world network 
model, it is suggested to add the change due to individual risk in the influences on individual 
students. This could be done by considering a probability distribution for each individual 
student. This probability distribution could give each student a probability of movement 
to any particular compartment. To evaluate this, a certain percentage of students would 
change at each time step to their highest probability. The graduation or dropout rates from 
the deterministic model should be included as well. Since the college student population 
is regularly changing, it is necessary to add this to properly model the college atmosphere. 
Along with the change in the number of students, a creation and destruction of edges or 
acquaintances would have to occur. Students in the college environment do not typically have 
the same friends throughout their entire college careers and these bonds change significantly 
after graduation. While the deterministic model gives ranges for parameters based on the 
“wetness” of a campus and surrounding community, the network model does not include 
this. Inclusion of a wetness term or equation would give the ability to model various types 
of schools and communities more accurately. 
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Figure 13: The Beta Distribution with α 0.41 and β 1.67. 
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Figure 14: With an initial population of 200 students and a completely random graph, the distribution of 
connections follows a power law. 
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Figure 15: With an initial population of 200 students and a graph with cluster connections and few random 
connections, the distribution of connections no longer follows a power law. 

Figure 16: Illustration of random and nearest neighbor connections. 
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17: The standard network model 
time step of zero. 
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Figure 18: The standard network model 
at its mid-range time step. 
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Figure 19: The network model at its final time step. 
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Figure 20: The deterministic model adjusted for social interactions. 
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Figure 21: The network model at a time Figure 22: The network model at a time 
step of zero. step of one. 

31 



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Completely Connected Network Model (radius = 2)

Position in the x direction

P
os

iti
on

 in
 th

e 
y 

di
re

ct
io

n

Figure 23: The network model after a 
time step of two. 
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Figure 24: The network model at its final 
time step. 
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Figure 25: The nearly complete Figure 26: The nearly complete network 
model at a time step of zero. model at a time step of one. 
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Figure 27: The nearly complete network Figure 28: The nearly complete network 
model after a time step of two. model at its final time step. 
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