Which Experiment Should I Choose?

So Many to Choose From....
So Many to Choose From...
99 parameter sets, and 144 pulse sequences with “HSQC”

- ea phase sensitive using Echo/Antiecho method
- ed with multiplicity editing
- et phase sensitive using Echo/Antiecho-TPPI method
- f3 using f3 - instead of f2 – channel
- gp using gradients with “:gp” syntax
- ph phase sensitive using States-TPPI, TPPI, States or QSEQ
- pr with presaturation
- si sensitivity improved
- sp using a shaped pulse

HSQCEDETGP = hsqc + ed + et + gp
- multiplicity edited HSQC using echo/antiecho detection and gradient pulses
New in TopSpin 3.0

“Show Recommended”

- “Recommended” parameter sets for some of the most commonly used Small Molecule Experiments

Not Rules Written in Stone
Just Things to Think About
1H Observe

PROTON
- zg30
- 1H acquire with 30° pulse
 - $\cos(\theta) = e^{-(d1+aq)/T1}$
 - 30° pulse is a nice compromise of signal and time for most T1 values
 - The zg pulse sequence uses a 90° pulse
- Not many options outside of D1, NS and SW/O1P
 - Keep in mind that DW=1/sw
 - Number of points stay constant, so changing sw affects the acquisition time.

WATERSUPP
- noesygppr1d
 - Presaturation applied during D1, and d8
 - Narrower residual water peak

1H Observe

Additional Parameter Sets for Automation

CMCQ_PROTON
- zg30
 - For quantitation purposes, so longer D1
 - AU program (cmcq_acquQuant) that does a pulse calibration on each sample

WATER
- zgcpr
 - Presaturation using composite 90° pulse
 - AU program (au_watersc) that does a scout scan to find the most intense signal and sets O1 there

LC1DWTDCC
- wetdc
 - WET with 13C decoupling during WET and AQ
 - AU program to automatically find solvent peaks and create the wet shape
 - Number of peaks to suppress defined by L30
13C Observe

- **C13CPD**
 - zgpg30
 - 13C acquire with 30° pulse, and power gated decoupling during D1, and AQ
 - Not many options outside of D1, NS and SW/O1P
 - Keep in mind that DW=1/sw
 - Number of points stay constant, so changing sw affects the acquisition time.

- **C13DEPT135**
 - deptsp135
 - Most common DEPT experiment showing all protonated carbons
 - Uses an adiabatic 180° pulse

13C Observe

Adiabatic Pulses

[Gibberellic Acid in Acetone]

- **dept135**
 - 500 MHz

- **deptsp135**
 - 400 MHz
• **C13CPD**
 - `zpg30`
 - 13C acquire with 30° pulse, and power gated decoupling during D1, and AQ
 - Not many options outside of D1, NS and SW/O1P
 - Keep in mind that $DW=1/sw$
 - Number of points stay constant, so changing sw affects the acquisition time.

• **C13DEPT135**
 - `deptsp135`
 - Most common DEPT experiment showing all protonated carbons
 - Uses an adiabatic 180° pulse

• **Other Sequences**
 - `zgig30`
 - Sequence with inverse gated decoupling, so only during acquisition
 - `dept45sp`
 - `dept90sp`
1H–1H Homonuclear 2D Experiments

COSY

Through Bond

![Through Bond Diagram]

- COSY GPSW
 -.cosygpppqf -- Magnitude mode COSY (qf) with gradients (gp) and purge pulses (pp)
 - Gradient selected, so ns ≥ 1
 - Purge pulse to reduce artifacts from not waiting long enough for D1
 - D1=0.1sec, AQ=0.8

Caryophyllene Oxide in DMSO

![Caryophyllene Oxide in DMSO]

- No Purge Pulses
- With Purge Pulses
1H-1H Homonuclear 2D Experiments

COSY

- **COSYGPDPHPSW**
 - cosygpmfphpp -- COSY with gradient pulses (gp), multiple quantum filter (mf), phase sensitive (ph), and purge pulses (pp)
 - Double quantum filter simplifies the diagonal
 - Phase sensitive information (active/passive coupling)

- Cholesterol Acetate in CDCl₃

- Difficult for a beginner to phase

1H-1H Homonuclear 2D Experiments

Another COSY Option

- cosygmfppqf -- Magnitude mode (qf) COSY, with gradients (gp), multiple quantum filter (mf), and purge pulses (pp)
 - Double quantum filter to simplify the diagonal
 - Still magnitude mode so no phase necessary

- Caryophyllene Oxide in DMSO
1H-1H Homonuclear 2D Experiments

Another COSY Option

- Double quantum filter to simplify the diagonal – Especially if the window function is adjusted to bring out more signal (ssb = 4)

- CMCse_COSY
 - cosvqpmfppqf

 » Because the parameter set was designed for CMCse, there is more resolution (512 increments) than other parameter sets
 - Longer experiment
 - Brings out peaks that are weakly coupled

1H–1H Homonuclear 2D Experiments

Through Bond

- COSY
- TOCSY
1H-1H Homonuclear 2D Experiments

TOCSY

- **MLEVPWSW**
 - mlevphpp -- Homonuclear Hartman-Hahn using MLEV17 sequence, phase sensitive (ph), and purge pulses (pp)

- **MLEVPHPHR**
 - mlevphpr.2 -- Homonuclear Hartman-Hahn using MLEV17 sequence, phase sensitive (ph), and presat (pr),
 - TOCSY Mixing Time is defined by d_9
 - Default is 0.08 seconds

Strychnine in CDCl$_3$

1H-1H Homonuclear 2D Experiments

Through Bond

COSY

Through Space

NOESY

ROESY
1H-1H Homonuclear 2D Experiments

NOESY/ROESY

- **NOESYPHWSW**
 - *noesypphpp* -- NOESY with gradient pulses during mixing time, phase sensitive (ph), and purge pulses (pp)
 - Mixing time is defined by d8
 - Default is 0.3 seconds

- **ROESYPHWSW**
 - *roesypphpp.2* -- ROESY sequence, phase sensitive (ph), and purge pulses (pp), using 180x-180x pulses for spin lock to suppress TOCSY artifacts (.2)
 - Mixing time is defined by p15
 - Default is 200 milliseconds

Zero Crossing Depends on:
- Magnetic Field
- Size of Molecule
- Temperature
- Viscosity

Around 1,000 – 2,000 Daltons

1H-1H Homonuclear 2D Experiments

NOESY/ROESY

- **NOESY**
 - 400 MHz

- **ROESY**
 - 400 MHz

Small Molecule
- NOESY
- ROESY

Large Molecule
+ NOESY
+ ROESY

Exchange Peak
+ NOESY
+ ROESY

Pamoic Acid
MW = 388
DMSO at 292 K

High-Resolution NMR Techniques in Organic Chemistry
Timothy D.W. Claridge 1999
1H-13C Heteronuclear 2D Experiments

Single Bond

![Diagram](image1.png)

HSQC

- Bare Bones
- Enhanced Sensitivity
- Adiabatic Pulses
- Multiplicity Edited

- Shaped Pulses for Inversion
- Shaped Pulses for Inversion and Refocusing
- COSY peak Suppression
- Shaped Pulses for Inversion and Adiabatic Pulses
1H–13C Heteronuclear 2D Experiments

HSQC

- **Adiabatic Pulses**
- **Sensitivity Improved**
- **Multiplicity Edited**

1H–13C HSQC – Things to Consider

HSQCEDETGPSISP_ADIA and HSQCETGPSISP_ADIA

- Bare Bones
 - *hsqqph*
 - *hsqqpph*

 - **Adiabatic Pulses**
 - **Sensitivity Improved**
 - **Multiplicity Edited**

 - Shaped Pulses for Inversion
 - Shaped Pulses for Inversion and Refocusing
 - Shaped Pulses for Inversion
 - Gradient in Black
 - COSY peak Suppression
 - Shaped Pulses for Inversion
 - Matched Sweep
 - Shaped Pulses for Inversion
$^{1}H^{13}C$ HSQC – Things to Consider

Multiplicity Edited or Not?

- HSQCETGP
 - hsqcetgp
 - Simple Gradient HSQC – non Edited
- HSQCEDETGP
 - hsqcedetgp
 - Simple Multiplicity Edited Gradient HSQC

$^{1}H^{13}C$ Heteronuclear 2D Experiments

HSQC

Adiabatic Pulses

Sensitivity Improved

Multiplicity Edited
“Matched Sweep” Adiabatic Pulses

Removing the J Dependence

\[d_{21} = \frac{1}{2J_{zh}} \]

If \(J = 180 \text{ hertz} \) → 2.7 ms
If \(J = 100 \text{ hertz} \) → 5 ms

The Matched Sweep Adiabatic Pulse

Sweeps through the \(^{13}\text{C}\) frequency range so that it inverts signals closer to when the time matches the \(1/2J \) condition

\(^1\text{H}-^{13}\text{C}\) HSQC – Things to Consider

Multiplicity Edited or Not?

- \text{hsqcetgp}
- \text{hsqcedetgp}
- \text{hsqcedetgpsp.3}

Menthyl Anthranilate in DMSO
1H-13C HSQC – Things to Consider: Multiplicity Edited or Not?

- **HSQCEDETGPSISP_ADIA**
 - **hsqcedetgpsisp2.3 w/ bi_p5m4sp_4sp.2 decoupling**
 - Multiplicity Edited (ed)
 - You get the DEPT type information in addition to the 1H-13C connectivity
 - Adiabatic Pulses (sp) – Including a Matched Sweep Adiabatic (.3)
 - No significant loss in sensitivity
 - Sensitivity Improved (si)

- **HSQCETGPSISP_ADIA**
 - **hsqcetgpsisp2.2 w/ bi_p5m4sp_4sp.2 decoupling**
 - Not Multiplicity Edited
 - Simple, all peaks are Positive
 - Adiabatic Pulses (sp) – for both Inversion and Recovery (.2)
 - Sensitivity Improved (si)

\[d_{21} = \frac{1}{2}J_{xy} = 3.6 \text{ ms} \]

\[\delta = \text{gradient recovery delay} = .2\text{ms} \]

\[\sim 7 \text{ ms longer of a sequence} \]

Depending on the T2 relaxation rates of the molecule the non-edited version might be more sensitive:

But is it worth sacrificing the multiplicity information?
1H-13C HSQC – Things to Consider
Multiplicity Edited or Not?

Multiplicity Editing:
~ 7 ms longer of a sequence

1 mg/ml Quinidine
1st fid from an HSQC

1 mg/ml Quinidine, 1 hour 20 Min each HSQC w/ 9 hour DEPT as projection
1H-13C HSQC – Things to Consider

Multiplicities Edited or Not?

Matched Sweep Adiabatic Pulse?

0.1 mg/ml Quinidine, 10 hour each HSQC spectra w/ no DEPT
1H-13C HSQC – Things to Consider

Benefit of Matched Sweep

hsqcedetgpsisp2.2 hsqcedetgpsisp2.3

Quinidine in DMSO

The Matched Sweep Adiabatic Pulse

Sweeps through the 13C frequency range so that it inverts signals closer to when the time matches the 1/2J condition

\[d_{21} = \frac{1}{2J_{xh}} \]

If \(J = 180 \text{ hz} \rightarrow 2.7 \text{ms} \)

If \(J = 100 \text{ hz} \rightarrow 5 \text{ ms} \)
1H-13C HSQC – Things to Consider

Matched Sweep Adiabatic Pulse?

- **hsqcedetgpsisp2.3**
 - Multiplicity Edited
 - Matched Sweep Adiabatic Pulse
 - + Works well when J scales with Chemical Shift
 - - Problematic when J differs

- **hsqcedetgpsisp2.2**
 - Multiplicity Edited
 - Regular Adiabatic Pulses
 - + Less Sensitive to deviations in J
 - - No benefit from the matched sweep for “normal” resonances

J_{hc} = 158 Hz

α-Thujone in DMSO
1H-13C HSQC – Things to Consider

Sensitivity Improved or Not?

- **HSQCEDETGPSISP_ADIA**
 - hsqcedetgpsisp2.3

- **HSQCETGPSISP_ADIA**
 - hsqcetgpsisp2.2
 - Sensitivity Improved Element
 - Possible sensitivity improvement of ~ \(\sqrt{2}\)

- **HSQCEDETGPS.P3_ADIA**
 - hsqcedetgpsp.3
 - Multiplicity edited with Matched Sweep Adiabatic

- **HSQCETGPS.P2_ADIA**
 - hsqcetgpsp.2
 - Non Multiplicity Edited
 - No Sensitivity Improved Element
 - In general, less sensitive than the SI version
1H-13C HSQC – Things to Consider
Sensitivity Improved or Not?

Sensitivity Improved or Not?

\[d_{24} = \frac{1}{8}J_{\omega H} = 0.89 \text{m} \]

\[\sim 2\text{ms longer of a sequence} \]

Depending on the T2 relaxation rates of the molecule of interest, the non-si version might be actually be more sensitive.
$^1\text{H} - ^{13}\text{C}$ HSQC – Things to Consider
Sensitivity Improved or not?

$d_{24} = \frac{1}{8}J_{xh}$
$d_{21} = \frac{1}{2}J_{xh}$

Matched Sweep Adiabatic Pulses can be use (p31,sp10) to compensate for J_{xh} in d21.

But no compensation available for J_{xh} in d24

Strychnine in CDCl$_3$
1H-13C HSQC – Things to Consider

Sensitivity Improved or Not?

- **HSQCEDETGPSISP_ADIA**
 - `hsgcedetgpsisp2.3`
 - Multiplicity Edited
 - “Sensitivity Improved” INEPT element
 - Matched Sweep Adiabatic Pulses
 - More Sensitive
 - Non quantitative

- **HSQCEDETGPSP.3_ADIA or CMCse_HSQC**
 - `hsgcedetgpsp.3`
 - Multiplicity Edited
 - Without “Sensitivity Improved” INEPT element
 - Matched Sweep Adiabatic Pulses
 - Less Sensitive
 - Quantitative integrals
 - Used in CMCse

1H-13C HSQC – Things to Consider

COSY Peak Suppression

- Bare Bones
- `hsgph`
- `hsggph`
- Adiabatic Pulses
 - Shaped Pulses for Inversion (sp)
 - Shaped Pulses for Inversion and Refocusing (sp)
- Sensitivity Improved
 - Shaped Pulses for Inversion and Refocusing (sp)
 - INEPT (2)
- Multiplicity Edited
 - COSY peak Suppression (2.3/4)
 - Shaped Pulses for Inversion (sp)
 - Matched Sweep Adiabatic Pulses (sp)
1H-13C HSQC – Things to Consider

COSY Peak Suppression

- **hsqcedetgpsisp2.4**
 - Sensitivity Improved
 - Multiplicity Edited
 - Matched Sweep
 - COSY Suppression

- **hsqcetgpsisp2.3**
 - Sensitivity Improved
 - Non Multiplicity Edited
 - COSY Suppression

+ Removes the COSY artifacts that arise when using the “si” versions
- Less sensitive than regular “si” versions

Menthyl Anthranilate in DMSO
1H-13C HSQC – Things to Consider

Long Refocusing Pulse

Adiabatic Pulses:
- Inversion (p_{14}) = 0.5 ms
- Refocusing (p_{24}) = 2 ms

Hard 180 Pulse:
- 16 us

13C Labeled Sucrose

hsqcetgpsp,2
$^{1}H-^{13}C$ HSQC – Things to Consider

When is Simple Better?

- Adiabatic Pulses
- Sensitivity Improved
- Multiplicity Edited

- Shaped Pulses for Inversion
- Shaped Pulses for Inversion and Refocusing
- Adiabatic Pulses for Inversion and Refocusing
- Shaped Pulses for Inversion and Refocusing
- COSY peak Suppression
- INEPT

- Matched Gradient Adiabatic Pulses

$d_{21} = 1/2J_{x_h} = 3.6$ ms
$d_{24} = 1/8J_{x_h} = 0.89$ ms

Adiabatic pulses:
- Inversion = 0.5 ms
- Refocusing = 2 ms

Hard 180 Pulse:
- 16 us
HSQC – Things to Consider
When Is Simple Better?

1H – 11B Spectra

1H - 13C Heteronuclear 2D Experiments

Single Bond
HSQC/HMQC

Multiple Bond
HMBC
1H-13C Heteronuclear 2D Experiments
HMBC

- **HMBCGP**
 - hmbcgplpndqf
 - Gradients for coherence selection (gp)
 - Low pass filter (lp)
 - No decoupling during acquisition (nd)
 - Magnitude Mode (qf)
 + Simple
 + No 180° pulses

- **HMBCETGPL3ND**
 - hmbcetapl3nd
 - Echo Anti Echo (et)
 - Gradients for coherence selection (gp)
 - 3rd order Low Pass filter (l3)
 + Better suppression of 1J correlation peaks
 + More sensitive because of Echo Anti Echo Detection
 - More difficult to process (xfb + xf2m)

1H-13C Heteronuclear 2D Experiments
HMBC - Sensitivity

- Quinidine in DMSO
 - 1 mg/ml

HMBCETGPL3ND
HMBCGP

32 Scans, 256 Increments = 6 hours each
1H-13C Heteronuclear 2D Experiments

HMBC – Low Pass Filter

- hmbcgpplndqf

 \[d_2 = \frac{1}{2J_{xh}} \]

- hmbcetgp3nd

 \[\Delta_1 = \frac{1}{2(J_{xh\text{min}} + 0.07J_{xh\text{max}})} \]
 \[\Delta_2 = \frac{1}{J_{xh\text{min}} + J_{xh\text{max}}} \]
 \[\Delta_3 = \frac{1}{2(J_{xh\text{max}} - 0.07J_{xh\text{max}} - J_{xh\text{min}})} \]

1H-13C Heteronuclear 2D Experiments

HMBC – Suppression of 1J correlations

Gibberellic Acid in Acetone

- $J_{xh\text{(max)}} = 170$ Hz
- $J_{xh\text{(min)}} = 120$ Hz
- $J_{xh} = 145$ Hz

Long Range J_{xh} 8 Hz
1H-13C Heteronuclear 2D Experiments
Another HMBC option

- **hmbcetgpnd**
 - Gradients for coherence selection
 - Echo Anti Echo
 - Similar sensitivity to hmbcetgpl3nd
 - No Low Pass filter
 - 1J correlations are often useful when interpreting the data instead of the HSQC

- **Heteronuclear 2D Experiments**
Not Just 13C – $^1H/^{15}$N also

- **HMBCGP_15N**
 - **hmbcgpndaf**
 - 15N is routed through f_2
 - Gradients for coherence selection
 - Ratio set to select for $^1H/^{15}$N instead of $^1H/^{13}$C
 - Other nuclei are possible with the AU program "gradratio"

- **HSQCETGP_15N**
 - **hsqcetpsij2**
 - 15N is routed through f_2
 - Echo-anti echo
 - Sensitivity improved
 - Gradients in the back inept
 - Gradients for coherence selection
 - Ratio set to select for $^1H/^{15}$N
1H-13C Heteronuclear 2D Experiments

HSQC_TOCSY_ADIA

- **Other Options**
 - **hsqcdiedetgpsisp.2**
 - Inversion of directly coupled protons
 - “HSQC” are +
 - “TOCSY” are -
 - **hsqcdiedetgpsisp.3**
 - Fully Edited
 - “HSQC” → CH/CH₃ + & CH₂ -
 - “TOCSY” → CH/CH₃ - & CH₂ +

Menthyl Anthranilate in DMSO

HSQC

TOCSY
$^{1}H-^{13}C$ Heteronuclear 2D Experiments

HSQC_TOCSY_ADIA

hsqcdiedetgpsisp.3

New in TopSpin 3.0

“Show Recommended”

But There’s More If These Don’t Answer Your Question
1H-13C Heteronuclear 2D Experiments

HMBC

How Do I Know 2J vs 3J?

H2BC (AKA HMQC-COSY)
Heteronuclear 2 Bond Correlation

Strychnine in CDCl₃

HSQC

h2bcetgpl3
H2BC

Experimental Details

Advantages of the H2BC:
- It helps solve the problem of distinguishing two- and three-bond correlations in HMBC or HSQC-TOCSY.
- Is independent of occasionally vanishing $^{2}J_{CH}$ coupling constants, which alleviates the problem of missing two-bond correlations in HMBC spectra.

Disadvantages of the H2BC:
- Only protonated carbons are observed (no 4*).
- Relies on $^{3}J_{HH}$ to get “2 Bond” correlations.
- $^{4}J_{HH}$ Couplings are not uncommon, and if large enough (>1Hz) will also be observed.
- No Parameter Set in TopSpin.
- Contact the Applab, we do have one.
- Pulse Sequence → h2bcetgpl3.
- Processing → xfb + xf2m.

INADEQUATE

Experimental Details

Advantages:
- Information rich!

Disadvantages:
- Insensitive.
- Relies on ^{13}C next to another ^{13}C.
- 100 mg/ml Strychnine on a RT 400 MHz BBFO Smart Probe → **2.5 DAYS**
- Single Scan 1D-^{13}C S:N of 100:1.
Experimental Details

- **Pulse Sequence:**
 - inadphsp

- **Experimental Details:**
 - SW in F2 = 13C Spectrum
 - SW in F1 = 2 x 13C SW in F2

- **Referencing:**
 - Center of spectrum in F1 = 2x O1p

How to Interpret

Chemical Shift in Indirect Dimension = $C_a + C_b$
INADEQUATE

Benefit of Phase Sensitive

Chemical Shift in Indirect Dimension = $C_a + C_b$

Correlation at 51.8 ppm and 95 ppm

$C_7 = 51.9$ ppm + $C_{17} = 42.9$ ppm $\Rightarrow 94.8$

Experimental Details - Folding

- Pulse Sequence:
 - `inadphsp`

- Experimental Details:
 - SW in F2 & F1 = 13C Spectrum

- Referencing:
 - Center of spectrum in F1 = 2x O1p

- Position of Folded Peaks = SW $+ C_a + C_b$
INADEQUATE

Benefit of Folding

Chemical Shift in Indirect Dimension = SW + C_a + C_b

Correlation at 51.9 ppm and 255 ppm

C7 = 51.9 ppm + C17 = 42.9 ppm + SW = 160 ppm → 254.8

ADEQUATE

Proton Detected 13C-13C Correlations

1,1-ADQUATE

1,n-ADQUATE

n,1-ADQUATE

n,n-ADQUATE
ADEQUATE Proton Detected 13C-13C Correlations

1,1-ADQUATE
adeq11etgpsp

50 mg/ml Strychnine in CDCl3
Room Temp 400 MHz BBFO
Smart Probe \rightarrow 16 hours

Correlation at $H_a / C_a + C_b$
From HSQC \rightarrow $H_a = 8.1$ ppm, $C_a = 116.17$ ppm
ADEQUATE Peaks at 244.5 ppm and 258.3
C4 Next to Carbons at 127.8 (C3) and 142.13 (C5)

ADEQUATE Proton Detected 13C-13C Correlations

1,n-ADQUATE
adeq1netgpsp

50 mg/ml Strychnine in CDCl3
500 MHz Prodigy \rightarrow 4 days 4 Hours

Correlation at $H_a / C_a + C_b$
From HSQC \rightarrow $H_a = 8.1$ ppm, $C_a = 116.17$ ppm
ADEQUATE Peaks at 238.4 ppm and 244.7
C4 Next to Carbons at 124.0 (C1) and 132.67 (C3)
ADEXUATE
Proton Detected 13C-13C Correlations

Refocused 1,1-ADQUATE
adeq11etgprds.2

50 mg/ml Strychnine in CDCl3
Room Temp 400 MHz BBFO
Smart Probe → 16 hours

Correlation at H$_2$ / C$_6$
Can Interpret like an HMBC/H2BC
Know it is Neighboring 13C (J$_{CC}$)
Unlike H2BC – correlations to 4 Carbons are possible